## **Electronic Supplementary Information**

# Depleted Upconversion Luminescence in NaYF<sub>4</sub>:Yb<sup>3+</sup>,Tm<sup>3+</sup>

## Nanoparticles via Simultaneous Two-Wavelength Excitation

Hongxin Zhang,<sup>a</sup> Tianqing Jia,<sup>\*a</sup> Long Chen,<sup>a</sup> Yuchan Zhang,<sup>a</sup> Shian Zhang,<sup>a</sup> Donghai Feng,<sup>a</sup> Zhenrong

Sun<sup>a</sup> and Jianrong Qiu<sup>b</sup>

<sup>a</sup> State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China. E-Mail: <u>tqjia@phy.ecnu.edu.cn</u>.

<sup>b</sup> Department of Materials Science and Technology, Zhejiang University, Hangzhou 310027, China.

#### 1. The influence of particle concentration on depletion efficiency



Fig. S1 The influence of particle concentration on depletion efficiency of 456 nm emission in NaYF<sub>4</sub>:20%Yb<sup>3+</sup>,1%Tm<sup>3+</sup> UCNPs excited by 980 nm (8.6 W cm<sup>-2</sup>) and 1550 nm (36.6 W cm<sup>-2</sup>) lasers. 1 means the initial particle concentration. 1/2, 1/3, 1/4, and 1/5 represent the concentration is one-half, one-third, one-quarter, and one-fifth of the initial particle concentration, respectively.



2. The UCL spectra of different doping concentrations of  $Tm^{3+}$  ion

Fig. S2 The UCL spectra of Yb<sup>3+</sup>/Tm<sup>3+</sup> codoped UCNPs with different doping concentrations of Tm<sup>3+</sup> ion.

#### 3. Ion distance of different contents of Tm<sup>3+</sup> ion

Ion distance is mainly dependent on ion concentration. Here, we give an estimation method. We roughly regard that Tm<sup>3+</sup> ions equably distribute in the nanocrystals.

For x% Tm<sup>3+</sup> doped nanoparticles, there is one Tm<sup>3+</sup> ion existing in y unit cells.  $y = \frac{100}{x}$  is the number of unit cells. The ion distance d can be obtained from the formula:  $d = a \times \sqrt[3]{y}$ , where a is the interplanar distance. High resolution TEM image of Tm<sup>3+</sup> doped nanoparticles in Fig. S3 shows that a is 0.51 nm.



Fig. S3 HRTEM image of Tm<sup>3+</sup> doped nanoparticles.

The ion distances of different contents of  $Tm^{3+}$  ion doped nanoparticles are calculated and shown in Table S1.

Table S1 Ion distance in different contents of Tm<sup>3+</sup> ion.

| Contents     | 0.2%   | 0.5%   | 1%     | 4%     |
|--------------|--------|--------|--------|--------|
| Ion distance | 4.0 nm | 3.0 nm | 2.4 nm | 1.5 nm |