Predicting a Graphene-like WB₄ Nanosheet with Double Dirac Cone, the Ultra-high Fermi Velocity and Significant Gap Opening by Spin-orbit Coupling

Chunmei Zhang¹, Yalong Jiao¹, Fengxian Ma¹, Steven Bottle¹, Mingwen Zhao², Zhongfang Chen³ and Aijun Du^{1,*}

¹School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Garden Point Campus, QLD 4001, Brisbane, Australia

²School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China ³Department of Chemistry, Institute for Functional Nanomaterials, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931, USA,

Method

The band gap are calculated in the generalized gradient approximation in the Perdew, Burke, and Ernzerhof form (GGA -PBE) PBE calculations¹ (Figure S1), which underestimate the band gap compared with HSE method. A damped van der Waals correction was incorporated using Grimme's scheme² to better describe the nonbonding interaction. Monkhorst–Pack k-points³ of 15 ×15 × 1 were used for sampling in the first Brillouin zone during geometry optimizations of the WB₄ monolayer. All of the atoms were fully relaxed until the residual force and energy converged to 0.001 eV/Å and 10⁻⁶eV, respectively. To make sure of the dynamical stability of the obtained structures, phonon dispersion analysis was performed by the finite displacement method⁴ using the Phonopy code⁵ interfaced with the density functional perturbation theory⁶ as implemented in VASP. In phonon calculations, an increased plane wave energy cutoff of 500 eV was employed, accompanied by more stringent convergence criteria for energy (10⁻⁸ eV) and force (0.001 eV/Å).

Next, we estimate the elastic limit of the WB₄ monolayer by calculating the strain–stress relation subject to a biaxial tensile tension. The maximum stress is the ultimate strength that a material can withstand while being stretched, and the corresponding strain is called the ideal strain strength, which is determined by the intrinsic bonding strengths. The maximum stress that 2D WB₄ can withstand while being stretched is about 3.5N/m with the corresponding ideal strain of 17% (Figure S2, S3), which is camparable to that of other well-known 2D materials such as MoS₂ (20%)⁷ and graphene (24%)⁸ suggesting the high mechanical strength and robust of two Dirac cone of the monolayer.WB₄.

Ab initio molecular dynamics (AIMD) simulations with canonical ensemble was performed to evaluate the thermodynamic stability. The structure did not collapse with time change for 10ps at 300 K and 1000K (Figure S4), which confirms our structure is stable at both room temperature and high temperature.

Figure S1. Calculated SOC band structures for 2D P6/mmm WB_4 with PBE method (183.7mev for cone 1 and 125.4 mev for cone 2, respectively).

Figure S2. The stress in the WB₄ monolayer subjected to biaxial strain. The structural snapshots under 17% strain. The strain directions are marked by x, y arrows.

Figure S3, The band structure changes when 1%, 5%, 10%, 15%, 17%, 20% biaxial strain is applied on the monolayer WB_4 . Biaxial strain is observed to shift the Dirac points without affecting the metallicity while preserving the Dirac points until 17%, which gives a clear description of the robust of Dirac cone.

Figure S4. The thermodynamic stability at (a) 300K (b) 1000K of monolayer WB_4 are evaluated through Ab initio molecular dynamics (AIMD) simulations. The figures present configurations from 10fs to 10ps.

- 1. J. P. Perdew, K. Burke and M. Ernzerhof, *Physical review letters*, 1996, **77**, 3865.
- 2. S. Grimme, *Journal of computational chemistry*, 2006, **27**, 1787-1799.

- 3. H. J. Monkhorst and J. D. Pack, *Physical review B*, 1976, **13**, 5188.
- 4. K. Parlinski, Z. Li and Y. Kawazoe, *Physical review letters*, 1997, **78**, 4063.
- 5. A. Togo, F. Oba and I. Tanaka, *Physical Review B*, 2008, **78**, 134106.
- 6. X. Gonze and C. Lee, *Physical Review B*, 1997, **55**, 10355.
- 7. T. Li, *Physical Review B*, 2012, **85**, 235407.
- 8. B. Mortazavi and G. Cuniberti, *Nanotechnology*, 2014, **25**, 215704.