Supporting Information for

Dual-functional photocatalysis for hydrogen evolution from

industrial wastewaters

Zhaoyong Lin, Lihua Li, Lili Yu, Weijia Li and Guowei Yang

State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology

Research Center, School of Materials Science & Engineering, Sun Yat-sen University,

Guangzhou 510275, Guangdong, P. R. China

Fig. S1. SEM image of Cu₂O cube in low magnitude. The scale bar represents 1 μm .

Fig. S2. SEM image of Cu₂O truncated cube in low magnitude. The scale bar represents 1 μm .

Fig. S3. SEM image of Cu₂O cubooctahedron in low magnitude. The scale bar represents 1 μm .

Fig. S4. SEM image of Cu₂O truncated octahedron in low magnitude. The scale bar represents 1 μm .

Fig. S5. SEM image of Cu₂O octahedron in low magnitude. The scale bar represents 1 μm .

Fig. S6. Cu 2p XPS pattern of Cu₂O.

Fig. S7. The absorbance variation of the RhB solution without photocatalyst (characteristic wavelength is set as 554 nm).

Fig. S8. Cycling tests of the photocatalyst under AM 1.5 irradiation.

Fig. S9. The absorbance variation of the MO solution without photocatalyst (characteristic wavelength is set as 464 nm).

Fig. S10. The absorbance variation of the MB solution without photocatalyst (characteristic wavelength is set as 664 nm).