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S1 Computational method

S1.1 Density functional theory
The band structure of the host material and the impurity levels introduced by the defect were calculated in
the framework of density functional theory (DFT). The projector-augmented wave (PAW) method was used as
implemented in the Vienna Ab Initio Simulation Package (VASP)1–3. For the O and S atoms, the ns2np4 elec-
trons were considered as valence electrons, while for Ca and Zn, these were 3s23p64s2 and 3d104s2 respectively.
For Mn, the 3p64s23d5 electrons were explicitly accounted for as valence electrons. These settings correspond
to the VASP 5.2 recommended potentials, which were shown to yield an excellent precision in comparison to
all-electron codes4,5. A generalized gradient approximation (GGA) was utilized in the form of the Perdew-
Burke-Ernzerhof (PBE) functional6, supplemented by an on-site Coulomb interaction, parameterized according
to a Hubbard Hamiltonian7. This additional interaction is known to improve the description of electron corre-
lation effects within the 3d shells of Zn and Mn. The scheme of Dudarev was applied, i.e. using an effective
Hubbard parameter, Ueff = U − J 8. The choice for the empirical parameter Ueff was based on existing litera-
ture for similar systems, i.e. Ueff(Zn, 3d) = 7 eV was chosen, based on DFT+U calculations on ZnS9–12 while
Ueff(Mn, 3d) = 3 eV was chosen, based on DFT+U calculations on MnS, MnO and ZnO:Mn13–16.

For all calculations, an energy cut-off of 650 eV and a 9x9x3 Monkhorst-Pack k-point grid17 for a single CaZnOS
unit cell were chosen to achieve a numerical accuracy better than 0.2 meV for the total energy. In addition, the
grid settings for Fast Fourier Transforms were set to "Accurate", corresponding to grid spacings of 1/2Gmax (or
1/4Gmax for augmentation charges and charge densities), with Gmax the maximum wave vector described by the
basis set. Electronic smearing was treated using the Gaussian scheme18,19 in relaxation runs (using a smearing
width of 0.2 eV) and using the tetrahedron method by Blöchl for single point calculations20. Defective CaZnOS
crystals were modeled by means of a supercell containing one defect. The supercell size was chosen by trading
off the required computational resources and the convergence of the Kohn-Sham density of states (DOS) and
defect formation energy. From this analysis, a 3x3x1 supercell containing 72 atoms was deemed to yield suffi-
ciently accurate results for the calculated physical quantities (e.g. convergence of the defect formation energy
up to 5 meV). This particular supercell dimension has the advantage that the separation between impurities
in neighboring supercells is very similar along different directions, given the experimental lattice parameters
of a= b= 3.76 Å and c= 11.40 Å. A 3x3x3 Monkhorst-Pack grid was selected to sample k-space for the supercells.

Starting from the experimentally determined crystal structure21, the geometric optimization of the cells and
supercells was performed for a series of fixed volumes, to which a Birch-Murnaghan equation of state was fitted
to obtain the equilibrium cell volume22,23. Seven single-point calculations were used, distributed in an inter-
val of 12% of the equilibrium volume around the equilibrium volume. Phonon calculations were performed
by means of the phonopy package24. Finite displacements of 0.01 Å were applied to all atoms in the 3x3x1
Mn-doped supercell. The dynamical matrix was constructed from the corresponding forces. The eigenvalues of
this matrix correspond to the phonon frequencies, which were plotted in density of states (DOS) plots with a
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smearing width of 6 cm−1 (0.18 THz). When considering a supercell of double that size, changes in the phonon
frequencies were only of the order of 1 %.

The work function was calculated for the surface orientation with the lowest surface energy by considering
a slab model with 32 atomic layers and a vacuum separation of 47 Å. In addition, the non-centrosymmetric
nature of the slab required correcting for its dipole moment. Such settings enable an optimal comparison to
experiment. To combine the vacuum potential of the slab model with the Fermi energy of the bulk material, the
method of macroscopic averages according to C. J. Fall et al. was used25.

Impurity levels, induced by a defect X , in host crystal A, can be calculated from DFT by considering the defect
formation energy, defined as26–28:

E f (A : XQ) = Etot(A : XQ)−Etot(A)−∑
i

niµi +Q(EF +EV +∆V ). (S1)

Herein, Q denotes the Kröger-Vink charge state of the defect and Etot is the total energy of the supercell. The
integer ni indicates the number of atoms of type i that have been added (ni > 0) or removed (ni < 0) to form
the defect and µi are the atomic chemical potentials. Finally, EF is the Fermi energy, i.e. the electron chemical
potential at absolute zero, referred with respect to the valence band maximum, EV. An additional correction
term, ∆V , based on the crystal potential, was added to Eq. S1 to align the energy reference for all calculations
in accordance with the undoped cell29.

In order to simulate the different charge states of the defects, electrons were added or removed from the su-
percell. To maintain a charge-neutral system, a homogeneously distributed background charge was added,
compensating for the added or removed electrons. A monopole-monopole correction term was taken into ac-
count to correct the total energies for unphysical interaction between the defect and its periodic images, using
the macroscopic dielectric constant of the host material calculated with density functional perturbation theory.

The impurity levels are defined as the so-called charge-state transition levels, i.e. the Fermi level locations at
which two charge states of the defect have the same formation energy:

ε(Q/Q′) =
1

Q−Q′

(
E f (A : XQ′)

∣∣∣
EF=EV

− E f (A : XQ)
∣∣
EF=EV

)
. (S2)

These levels correspond to the experimental impurity levels which can be assessed through deep-level tran-
sient spectroscopy (DLTS) or charge-transfer (CT) luminescence. This is in sharp contrast to the Kohn-Sham
levels originating from the defect and which emerge in the band gap28. These are not directly applicable to
spectroscopy as total energies are required to describe experimental transitions. The above methodology was
validated for various types of defects in diverse compounds16,30,31.

To handle both the inaccuracy of the band gap energy determined by PBE+U as well as the dependence of the
band gap energy and impurity level locations on the Ueff parameters, an extrapolation scheme was proposed by
Janotti and Van de Walle for the LDA+U functional32. Here, we applied this scheme to the PBE+U functional.
In this extrapolation scheme, physical impurity level locations are obtained by shifting formation energies ac-
cording to the differences between the PBE and PBE+U band gap on one hand and the experimental band gap
and the PBE+U band gap on the other hand32:

E f (A : XQ) = E f ,PBE+U (A : XQ)+
Eexp

G −EPBE+U
G

EPBE+U
G −EPBE

G
n∆ε̄. (S3)

Here, n is the single particle occupation number of the defect states in the band gap for charge state Q and ∆ε̄

is the difference for the ε(Q/Q′) values, calculated with PBE+U and PBE, averaged over the available charges
Q′. A good correspondence between these extrapolated impurity levels and the experimental levels has been
shown for multiple examples28,32,33.

2



S1.2 Crystal field theory
Crystal field theory (CFT) considers the luminescent defect from an atomic point of view where the host crystal
is considered as a perturbation, shifting and splitting the atomic multiplets34. An effective Hamiltonian is di-
agonalized which is a sum of different terms, accounting for the different interactions. Each term is factorized
as a radial integral, which is obtained empirically, and an angular integral, which is exactly calculated by alge-
braic methods, based on irreducible tensor operators, following the approach by Racah35–38. Given the limited
number of transitions found in experimental spectra, only the most important interactions can be accounted
for:

H = E0 + ∑
k=2,4

fkFk +
N

∑
i=1

∑
k=2,4

k

∑
q=0

Bkq
(
Ckq(i)+(−1)qCk −q(i)

)
+ζ3dAso +αL(L+1)+βQ. (S4)

The first term contains the spherically symmetric contributions of all interactions. In practice, the calculated
energy spectrum is shifted to put the lowest eigenenergy at zero. Furthermore, the Fk are Slater-Condon pa-
rameters, describing the non-central part of the inter-electronic Coulomb repulsion. As an alternative to F2 and
F4, the Racah parameters B and C are often used36. Bkq are the single-particle crystal field (CF) parameters34.
The point symmetry of the system and angular momentum selection rules dictate which Bkq’s are nonzero34,39.
The three last terms improve the description of experimental spectra and are quantified through the spin-orbit
constant ζ3d and Trees coefficients α and β respectively40,41. fk, Ckq, Aso, L2/h̄2 (with eigenvalues L(L+1)) and
Q are the associated irreducible tensor operators. The operator Ckq is proportional to the spherical harmonics
(Ckq =

√
4π/(2k+1)Ykq) and Q is Racah’s seniority operator38. The last two terms in Eq. S4 account for config-

uration interactions in an effective way42,43.

Electron correlation effects in Eq. S4 are restricted to the same two terms as in the atomic case. However,
in non-spherical crystal fields, a large number of two-electron operators can be added to H without violating
symmetry constraints44,45. The total number of parameters for the correlation crystal field can be restricted via
the so-called spin-correlated crystal field (SCCF) Hamiltonian,

Hsccf =
N

∑
i=1

∑
k=2,4

k

∑
q=0

ckBkq si ·S
(
Ckq(i)+(−1)qCk −q(i)

)
, (S5)

which captures the spin-dependent Coulomb exchange part of the correlation effect upon adding only two pa-
rameters ck

45–47. The si denote the spins of the individual electrons while S is the total spin of the electron
configuration. Eq. S5 was originally introduced by Judd to improve the description of lanthanide spectra, but
can equally well be applied to transition metal spectra48,49.

The CF calculations were performed with an in-house developed Python program which calculates matrix el-
ements of Eqs. S4 and Eq. S5, diagonalizes the Hamiltonian and searches optimal values∗ for the empirical
radial integrals through a downhill-simplex algorithm50,51. A Russell-Saunders 2S+1LJ(MJ) basis was used, which
is 252 dimensional in the case of a d5 configuration.

∗Corresponding to a minimal deviation between experimental and calculated energies, σCF =

√
∑i(E

exp
i −Ecalc

i )2

N−P for N levels of a manifold, using P empirical
parameters.
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S2 Formation energy of CaZnOS
It is known that the quaternary compound CaZnOS is unstable at high temperature. The competitive reaction
ZnS + CaO⇀↽CaS + Zn + 0.5 O2, which is the principle to recycle Zn in industry, is unavoidable, especially in
a reducing atmosphere. This results in impurities, mainly of the binary compounds ZnS, CaS and CaO52,53.
This finding is reflected in the formation energy of the compound which was calculated with respect to the
experimental precursors ZnS and CaO. While PBE yields a positive value of 39 meV per formula unit, corre-
sponding with an unstable CaZnOS phase, PBE+U yields a negative value of -16 meV per formula unit. These
small numbers support the empirical finding of most experimental studies -including this one- that it is hard
to obtain phase-pure CaZnOS. Small contaminations of binary by-products are always found in PXRD patterns
before post-treatments. Nevertheless, the stability of synthesized CaZnOS was positively validated at room tem-
perature through PXRD and luminescence spectroscopy of doped samples over time.

S3 Low symmetry and spin-correlated crystal fields for CaZnOS:Mn2+

In this supplementary section, the effects of two additional terms in the crystal field Hamiltonian on the spec-
trum of Mn2+ in CaZnOS is discussed. First, the low symmetry component of the crystal field is considered.
Subsequently, the effect of non-spherically symmetric electron correlation is demonstrated. It will be shown
that the latter contribution is more important to achieve a good fit to the experimental photoluminescence
spectrum. The former contribution can then be neglected to keep the number of empirical parameters in the
effective Hamiltonian limited.

The coordination polyhedron for Mn2+, when incorporated on a Zn site is not perfectly Td symmetric, but the
mixed anionic nature of the compound results in a lower C3v symmetry. This has two repercussions on the
crystal field (CF) parameterization, i.e. the tetrahedral ratio between B40 and B43 ceases to hold and another
nonzero parameter, B20, emerges, yielding a total of three independent CF parameters. Often, an alternative
parameterization due to Ballhausen is used in this case54:

B20 = −7Dσ

B40 = −14Dq−21Dτ

B43 = −2
√

70Dq. (S6)

When using this notation, the lowering of symmetry is stressed through the deviation of the tetrahedral ratio
(Dτ 6= 0) and the emergence of the additional term in the Hamiltonian (Dσ 6= 0).

The additional terms in the CF Hamiltonian cause further splitting of the crystal field levels, i.e. the orbital
triplets split in a doublet and a singlet, while the orbital doublets and singlets maintain their degeneracy. As
the 4G(T1/T2) terms feature broad excitation bands, their splitting is not visible. Different lines are resolved
from excitation to the 4D(T2) term, but it is not possible to derive the splitting due to the symmetry lowering as
the lines can also originate from vibronic side bands. At first sight, it therefore seems difficult to quantify the
symmetry lowering in terms of crystal field parameters.

A straightforward explanation for the lifting of the accidental degeneracy of the 4A1 and 4E levels would be
to attribute it to the symmetry lowering, offering a means to quantify Dσ and Dτ. Figure S1 compares the
effect of the two additional crystal field parameters on the energy difference between 4A1 and 4E, denoted
as ∆E(4Γ), and on the energy of the lowest excited state, E(4T1). As one can see from this figure, symmetry
lowering alone cannot account for the degeneracy lifting as it requires unrealistically high values of |10Dσ | in
the range of 25B, compared to typical |10Dq| values in the range of 5−10B for tetrahedral Mn2+ complexes55–58.

The accidental degeneracy of the 4A1 and 4E levels and its lifting - even in fields of Td or Oh symmetry - has been
the subject of long debate49,58,59. Koide and Pryce modeled this phenomenon by proposing non-equal Racah
parameters for electrons in the e and t2 orbitals, which they attributed to covalency. Ng and Newman showed
that the assumptions of this so-called epsilon or renormalization model are in contradiction with two-electron
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Figure S1 Energy of the emitting level, E(4T1) (left) and the lifting of the accidental degeneracy,
∆E(4Γ) = E(4A1)−E(4E) (right), as a function of symmetry lowering, 10Dσ and 10Dτ (top) and as a function of
the spin-correlated crystal field, c4 (bottom). The parameter values at which the experimental values for the
displayed quantities are found, are marked by the black and white lines, the optimized parameter values by
the white dot. All energy values in 1000 cm−1.

integrals, calculated through a configuration interaction technique60,61. Subsequently, the same authors showed
that an improved description of experimental spectra of octahedral Mn2+ ions in halides, corresponding with
σCF values in the range of 290-770 meV, could be obtained by adding the spin-correlated crystal field, already
known from lanthanide spectroscopy, Eq. S5, to the effective Hamiltonian49.

In the high-symmetry case of Td, only one additional parameter, c4, is required. Upon lowering symmetry to
C3v, a second nonzero parameter, c2, emerges. As crystal field studies have shown that the importance of ck

parameters increases with k, c2 can be neglected at leading order, along with Dσ and Dτ 46. In Fig. S1, it is
shown that the experimental 4A1 - 4E splitting can be obtained together with a realistic value for the lowest
excited state. Therefore, the spin-correlated crystal field term is used to describe the experimental spectrum. To
reduce the number of fitting parameters, Td symmetry is assumed, which is an acceptable simplification.
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S4 Electron-phonon coupling
According to the Franck-Condon approximation, the intensity of the emission spectrum from eigenstate i to
eigenstate f is proportional to the squared modulus of

〈ψf |D|ψi〉
〈
χf,N |χi,N′

〉
(S7)

where the first factor is the electronic transition moment featuring D, the electrons’ electric dipole moment in
the case of electric dipole transitions (E1), and the second factor the Franck-Condon integral62. ψ and χ denote
electronic and vibrational wave functions respectively.

The allowed or forbidden character of the transition can be assessed from the first factor in Eq. S7. Although
intraconfigurational 3d transitions have a small transition probability, different mechanisms relax the selection
rules. The tetrahedral coordination of the Mn ion does not possess a symmetry center whereby the Laporte par-
ity selection rule does not hold and the intraconfigurational 3d transition can become symmetry allowed if the
E1 selection rules ∆L = 1, ∆S = 0 are fulfilled. This seems not to be the case at first sight. However, the crystal
field can mix some 4P character in the 4G eigenstate, relaxing the ∆L = 1 rule. Furthermore, the ∆S = 0 rule is
relaxed by the spin-orbit interaction. The electronic transition moment

〈
6S(A1) |D|4G(T1)

〉
can then be nonzero,

evidenced by the occurrence of the totally symmetric irreducible representation (irrep) A1 in the reduction of
the direct product A1⊗T2⊗T1, considering that the electric dipole moment transforms according to the irrep T2.
Additional contributions can originate from mixing with higher-lying excited states through the odd part of the
crystal field.

The shape of an emission or excitation band is obtained by the second factor in Eq. S7. It shows how many
quanta, i.e. phonons of every vibrational mode, are created or annihilated during the transition. When multiple
vibrational modes are involved during an electronic transition, the standard Huang-Rhys theory for vibronic
transitions involving one vibrational mode is not directly applicable. Liu et al. have proposed an extension of
the low temperature limit of this theory for multiphonon vibronic spectra63 inspired by the observation by Bron
and Wagner that both local and lattice modes can couple to electronic transitions64–66. The spectral shape of
an emission band is then given by the sum of two contributions:

I(E) = I0,loc ∑
Nk

· · ·∑
N1

(
k

∏
i=1

e−Si
SNi

i
Ni!

)(
E0−∑

k
i=1 Nih̄ωi

E0

)4

f

(
E;E0−

k

∑
i=1

Nih̄ωi;σ

)
(S8)

+I0,lat ∑
Nk

· · ·∑
N1

∑
NΩ

(
k

∏
i=1

e−Si
SNi

i
Ni!

)(
e−SΩ

SNΩ

Ω

NΩ!

)(
E0−∑

k
i=1 Nih̄ωi

E0

)4

f

(
E;E0−NΩh̄Ω−

k

∑
i=1

Nih̄ωi;σΩ

)
.

The first term contains the contributions of the k different local modes with suitable symmetry labels, charac-
terized by frequency ωi and electron-phonon coupling Si. This term contains harmonic lines as well as lines
originating from frequency mixing between the different modes. The lines are broadened by a Gaussian shape
function f (E; µ;σ), centered at µ and having a width σ . E0 denotes the energy of the ZPL. The second term
originates from the coupling of Franck-Condon allowed modes to lattice acoustic modes63. This is modeled by
a single average lattice phonon frequency Ω, coupled to all allowed local modes with an effective Huang-Rhys
parameter SΩ and a broad density of phonon modes, yielding σΩ� σ 63. The second term ensures a good fit of
the broad band underlying the fine structure.
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