Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Electronic Supplementary Information

Effects of Ge and Sn substitution on the metal-semiconductor transition and thermoelectric properties of Cu₁₂Sb₄S₁₃ tetrahedrite

Yasufumi Kosaka,^a Koichiro Suekuni,^{*b} Katsuaki Hashikuni,^a Yohan Bouyrie,^c Michihiro Ohta,^c and Toshiro Takabatake^{a,d}

 ^a Department of Quantum Matter, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, 739-8530, Japan
 ^b Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan

 * suekuni.koichiro.063@m.kyushu-u.ac.jp
 ^c Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
 ^d Institute for Advanced Materials Research, Hiroshima University, Higashi-Hiroshima,

739-8530, Japan

Fig. S1 Schematic picture of the density of states near the valence band top for $Cu_{12-x}M_xSb_4S_{13}$ (M = Ge, Sn) and $Cu_{12-y}Zn_ySb_4S_{13}$.

Fig. S2 Temperature dependence of charge carrier part of thermal conductivity κ_c for (a) M = Ge and (b) M = Sn of Cu_{12-x} M_x Sb₄S₁₃ ($x \le 0.6$).