Electronic Supplementary Information

Hexacyanometallates for Sodium-Ion Batteries:

Insights into Higher Redox Potentials Using d

Electronic Spin Configurations

Duho Kim, ${ }^{a}$ Taesoon Hwang, ${ }^{a}$ Jin-Myoung Lim, ${ }^{a}$ Min-Sik Park, ${ }^{*, b}$ Maenghyo Cho, ${ }^{*, a}$ and Kyeongjae Cho ${ }^{*}$ c
${ }^{\text {a }}$ Department of Mechanical and Aerospace Engineering, Seoul National University, Gwanak-ro
1, Gwanak-gu, Seoul 08826, Republic of Korea.
${ }^{\mathrm{b}}$ Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.
${ }^{\text {c }}$ Department of Materials Science and Engineering and Department of Physics, the University of Texas at Dallas, Richardson, TX 75080, USA.

Compound	Lattice parameters				$\mathrm{R}_{\text {wp }}$	$\mathrm{R}_{\text {exp }}$
	a (\AA)		c (\AA)			
	Exp.	DFT	Exp.	DFT		
NFMCN	6.5788	6.5803	18.9286	19.4447	5.77	6.42

Table S1 Comparison of lattice parameters of NFMCN obtained from Rietveld refinement results and First-principles calculation.

Fig. S1 Binding energy curves as a function of distance between Fe and (a) CN and (b) NC. r_{0} refers to the distance at equilibrium state indicated as red circle.

Fig. S2 The projected partial density of states (PDOS) of $3 d$ electrons based on a sampled intermediate phase between the lowest and highest mixing enthalpy in $\mathrm{Na}_{2} \mathrm{FeMn}(\mathrm{CN})_{6}$ from Fig. 2 a .

Fig. S3 The projected partial density of states (PDOS) of $2 p$ electrons based on the phase of lowest mixing enthalpy ((a) C and (b) N) and the phase of highest mixing enthalpy ((c) C and (d) N) from Fig. 2 a in $\mathrm{Na}_{2} \mathrm{FeMn}(\mathrm{CN})_{6}$.

Fig. S4 (a) Initial charge (desodiation) and discharge (sodiation) curves between 2.0 V vs. 4.0
$\mathrm{Na} / \mathrm{Na}^{+}$with a constant specific current of 0.1 C rate, and (b) corresponding $\mathrm{dQ} / \mathrm{dV}$ profiles. (c)
Charge and discharge curves from the first to fifth cycles under the same condition as (a). (d)
The corresponding specific capacities as a function of cycle number.

