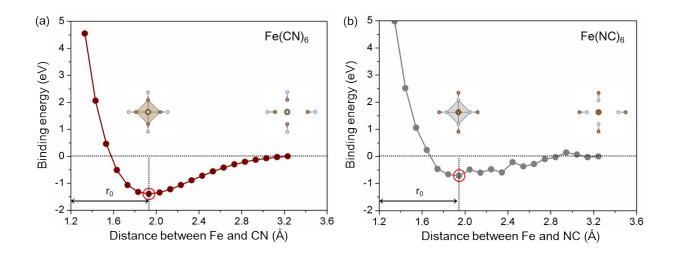
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

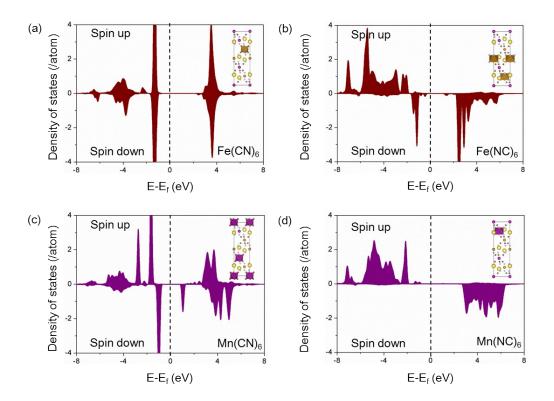
Electronic Supplementary Information

Hexacyanometallates for Sodium-Ion Batteries:

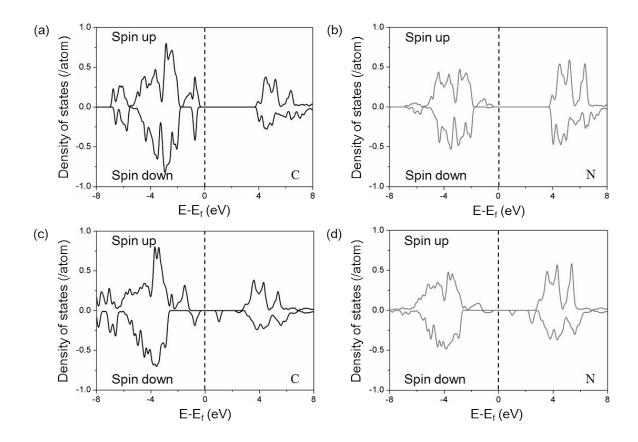
Insights into Higher Redox Potentials Using d


Electronic Spin Configurations

Duho Kim,^a Taesoon Hwang,^a Jin-Myoung Lim,^a Min-Sik Park,^{*,b} Maenghyo Cho,^{*,a} and Kyeongjae Cho^{*,c}


- ^a Department of Mechanical and Aerospace Engineering, Seoul National University, Gwanak-ro
- 1, Gwanak-gu, Seoul 08826, Republic of Korea.
- ^b Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin 17104, Republic of Korea.
- ^c Department of Materials Science and Engineering and Department of Physics, the University of Texas at Dallas, Richardson, TX 75080, USA.

Compound	Lattice parameters					
	a (Å)		c (Å)		R_{wp}	R_{exp}
	Exp.	DFT	Exp.	DFT		
NFMCN	6.5788	6.5803	18.9286	19.4447	5.77	6.42


Table S1 Comparison of lattice parameters of NFMCN obtained from Rietveld refinement results and First-principles calculation.

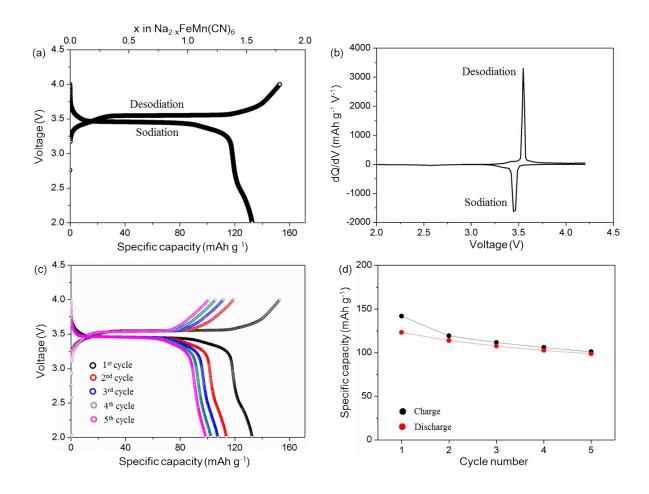

Fig. S1 Binding energy curves as a function of distance between Fe and (a) CN and (b) NC. r_0 refers to the distance at equilibrium state indicated as red circle.

Fig. S2 The projected partial density of states (PDOS) of 3*d* electrons based on a sampled intermediate phase between the lowest and highest mixing enthalpy in Na₂FeMn(CN)₆ from Fig. 2a.

Fig. S3 The projected partial density of states (PDOS) of 2*p* electrons based on the phase of lowest mixing enthalpy ((a) C and (b) N) and the phase of highest mixing enthalpy ((c) C and (d) N) from Fig. 2a in Na₂FeMn(CN)₆.

Fig. S4 (a) Initial charge (desodiation) and discharge (sodiation) curves between 2.0 V vs. 4.0 Na/Na⁺ with a constant specific current of 0.1 C rate, and (b) corresponding dQ/dV profiles. (c) Charge and discharge curves from the first to fifth cycles under the same condition as (a). (d) The corresponding specific capacities as a function of cycle number.