Table 1. Calculated bond length for HXN and XN at DFT/6-311++G(3df,3pd)/SDD level of theory. X=Ti, Zr, Hf, Ce, Th.								
Molecular	BP86		B3L	YP	B3PW91			
	BL ^[a]	Freq ^[b]	BL	Freq	BL	Freq		
HCe≡N	1.724	957.6	1.704	1008.4	1.694	1028.7		
Ce≡N	1.771	915.4	1.764	940.5	1.753	959.8		
HTi≡N	1.583	1091.2	1.565	1138.5	1.556	1151.8		
Ti≡N	1.577	1104.2	1.558	1146.6	1.551	1162.3		
HZr≡N	1.732	981.5	1.721	1011.1	1.708	1029.5		
Zr≡N	1.725	999.8	1.710	1032.1	1.703	1045.4		
HHf≡N	1.763	921.2	1.752	947.3	1.739	971.0		
Hf≡N	1.759	918.3	1.744	950.0	1.734	982.9		
HTh≡N	1.822	942.5	1.821	964.6	1.805	987.5		
Th≡N	1.811	973.1	1.808	991.8	1.795	1014.8		

Supporting Information

[a] BL = Bond Length (in Å).

[b] Freq = Frequencies (in cm^{-1}).

Table 2. ADF	energies c	of some I	ow-lying	Ce≡N MOs	at SR-ZC	DRA/GGA	PBE lev	vel using	Slater	TZ2P	basis
functions. ^[a]	Ū		, 0					Ū			

E _{MO} / eV	MO ^[b]	Contributions of AOs						
-5.386 (2) ^[c]	1π (2)	60% N2pπ	28% Ce5dπ	11% Ce4fπ	-			
-4.660	1σ	45% N2pσ	19% Ce5do	17% Ce4fσ	8% Ce6pσ			
-3.108	2σ	79% Ce6sσ	6% Ce6do	2% Ce4fo	11% Ce6pσ			

[a] The equilibrium B3LYP geometry ($R_{Ce-N} = 1.764$ Å) has been used. Contributions of AOs below 3% are not presented.

[b] The order of MOs are followed from the energy level diagram in figure 5.

[c] The number 2 in parentheses stands for second degenerate component.

Table 3. ADF energies of some low-lying HCe \equiv N MOs at SR-ZORA/GGA PBE level using Slater TZ2P basis functions. $^{[a]}$

E _{MO} / eV	MO ^[b]	Contributions of AOs						
-6.316	1A'	37% N2pπ	30% Ce5dπ	-	-	22% H1sσ		
-5.984	1A"	61% N2pπ	25% Ce5dπ	12% Ce4fπ	-	-		
-5.381	2A'	37% N2pσ	6% Ce5dσ	15% Ce4fσ	-	22% H1sσ		
-4.725	3A'	23% N2pσ	13% Ce5do	22% Ce4fσ	10% Ce6sσ	17% H1sσ		

[a] The equilibrium B3LYP geometry (R_{Ce-N} = 1.704 Å & R_{H-Ce} = 2.113 Å for H-Ce) has been used. Contributions of AOs below 3% are not presented.

[b] The order of MOs are followed from the energy level diagram in figure 5.

Table 4. ADF energies of some low-lying HCe MOs at SR-ZORA/GGA PBE level using Slater TZ2P basis functions. ^[a]

E _{MO} / eV	MO ^[b]	Contributions of AOs							
-5.573	1A'	14% Ce6sσ	22% Ce5do	-	59% H1sσ				
-3.348	1A"	70% Ce6sσ	25% Ce5dπ	-	-				
-2.566	2A'	-	7% Ce5do	92% Ce4fσ	-				
-2.513	3A'	-	79% Ce5do	20% Ce4fo	-				

[a] The equilibrium B3LYP geometry ($R_{H-Ce} = 2.113$ Å) has been used. Contributions of AOs below 3% are not presented.

[b] The order of MOs are followed from the energy level diagram in figure 5.