Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supporting information

for

Insights into water-mediated ion clustering in aqueous CaSO₄ solutions: Pre-

nucleation clusters characteristics studied by DFT and molecular dynamics Hui-Ji

Li^a, Dan Yan^a, Hou-Qin Cai^a, Hai-Bo Yi^{a*}, Xiao-Bo Min^{b*}, Fei-Fei Xia^{c*}

^aState Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China

^bChinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, School of Metallurgy and Environment, Central South University, Changsha 410083, China

^cInstitute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China

Email: hbyi@hnu.edu.cn (H.-B. Yi); mxbcsu@163.com (X.-B. Min); xff7461198@163.com (F.-F. Xia).

Atom	ε (kcal/mol)	$\sigma(A)$	<i>q</i> (e)	
Ca ²⁺	0.450	2.361	2.000	
S (sulfur in SO ₄ ^{2–})	0.250	3.550	2.000	
OS (oxygen in SO ₄ ^{2–})	0.200	3.150	-1.000	
O (oxygen in H ₂ O)	0.155	3.166	-0.848	
H (hydrogen in H ₂ O)	0.000	0.000	0.424	
0.03 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03 0.04			Albertis, landers, and die state for The home particular synchronization The home particular synchronization of the	Ŵ

Time (ps)

0.01

Table S1 Force-Field Parameters for Ions and Water in Molecular Dynamics Simulations.¹⁻³

Fig. S2 Typical structures of $[CaSO_4(H_2O)_n]$ (n = 1-5) clusters obtained at the B3LYP/aVDZ level. Gray dotted lines indicate hydrogen bonds.

Table S2 Structural and energy parameters for $[CaSO_4(H_2O)_n]$ (n = 1-5) clusters at the B3LYP/aVDZ level in the gas phase.

	structural parameters ^a			energy	
geometries				parame	parameters ^b
	R _{Ca-S}	R _{Ca-OS}	R _{Ca-O}	ΔE_0	ΔG
W1d-2L(0,0,1)	2.74	2.07	-	-516.0	-500.9
W1d-3L(1,0,0)	2.72	2.15	2.28	-540.6	-522.8
W1d-3L(0,1,0)	2.76	2.10	2.28	-523.2	-505.8
W2d-2L(0,0,2)	2.74	2.08	-	-521.2	-497.5
W2d-2L(0,0,2)'	2.77	2.08	-	-514.0	-487.3
W2d-3L(2,0,0)	2.78	2.13	2.28	-555.9	-529.0
W2d-3L(2,0,0)'	2.81	2.13	2.32	-550.0	-523.9
W2d-3L(1,0,1)	2.73	2.15	2.27	-545.3	-520.4
W2d-3L(1,0,1)'	2.74	2.15	2.29	-543.6	-516.0
W2d-4L(2,0,0)	2.78	2.20	2.33	-561.8	-534.9
W3d-3L(2,0,1)	2.81	2.15	2.27	-564.6	-528.9
W3d-4L(3,0,0)	2.79	2.21	2.32	-578.3	-542.1
W3d-4L(3,0,0)'	2.83	2.19	2.33	-576.9	-540.9
W3d-4L(1,2,0)	2.73	2.16	2.25	-557.6	-519.6
W3d-4L(2,0,1)	2.78	2.20	2.33	-564.1	-527.4
W3d-5L(3,0,0)	2.83	2.25	2.36	-580.2	-544.5
W3d-5L(2,1,0)	2.81	2.23	2.43	-577.7	-541.6
W4d-4L(4,0,0)	2.81	2.19	2.32	-595.3	-549.5
W4d-4L(4,0,0)'	2.84	2.20	2.31	-593.4	-547.8
W4d-4L(4,0,0)"	2.77	2.20	2.33	-589.1	-544.1
W4d-4L(4,0,0)"	2.79	2.21	2.32	-588.9	-544.0
W4d-5L-(4,0,0)	2.85	2.26	2.36	-595.4	-550.2
W4d-6L(3,1,0)	2.88	2.29	2.42	-595.2	-550.0
W5d-4L(5,0,0)	2.82	2.20	2.31	-605.2	-551.3
W5d-5L(5,0,0)	2.87	2.24	2.37	-610.2	-555.2
W5d-5L(5,0,0)'	2.88	2.28	2.35	-609.7	-555.3
W5d-6L(4,1,0)	2.91	2.31	2.42	-609.8	-555.0
W5d-7L(4,1,0)	2.93	2.35	2.47	-607.3	-553.2
W5m-5L(5,0,0)	3.20	2.23	2.36	-603.3	-548.8
W5m-6L(4,1,0)	3.26	2.27	2.42	-602.1	-547.4

 ${}^{a}R_{Ca-S}$, R_{Ca-OS} , and R_{Ca-O} are the Ca-S, averaged Ca-OS (oxygen of SO₄^{2–}) and Ca-O (oxygen of H₂O) distances in angstrom for $[CaSO_4(H_2O)_n]$ (n = 1-5) clusters. ${}^{b}\Delta E_0$ is the zero-point corrected binding energy, and ΔG is the free energy in the gas phase at 298 K and 1 atm. All the energies are in kcal/mol.

Fig. S3 Additional typical structures of $[CaSO_4(H_2O)_n]$ (n = 6-8, 10, 12, 14) clusters obtained at the

B3LYP/aVDZ level. Gray dotted lines indicate hydrogen bonds. It can be found that these conformers with more water molecules in site-B and site-C of Scheme 1 are less stable than their isomers with more water molecules in site-A, as shown in Fig. 1.

Table S3 Additional typical structural and energy parameters for $[CaSO_4(H_2O)_n]$ (n = 6-8, 10, 12, 14) clusters at the B3LYP/aVDZ level in the gas and aqueous phases.

				energy parameters ^b			
geometries	structural parameter ^a		ameter ^a	gas phase aqueous phase			
geometries	Reas	$R_{C_{2}}$ os	$R_{C_{2},0}$	$\Delta E_0 \Delta G \Delta E_0 \text{ solv} \Delta G_{\text{solv}}$			
W6d-6L(3.3.0)	2.89	2.31	2.42	-614.9 -550.2 -653.7 -589.0			
W6d-6L(3,1,2)	2.89	2.31	2.12	-605.6 -544.1 -651.3 -589.9			
W6d-7L(4,2,0)	2.00	2.27	2.12	-617.7 -552.4 -651.6 -586.2			
W6d-7L(4,1,1)	2.95	2.37	2.10	-603 2 -538 9 -641 6 -577 3			
W6d-8I(4,2,0)	2.99	2.30	2.10	-616.1 -554.3 -648.2 -586.4			
W6m-6L(4,2,0)	3 36	2.30	2.42	-612.7 -548.7 -653.5 -589.6			
W6m-6L(4,1,1)	3 28	2.30	2.12	-596 4 -530 3 -641 1 -575 1			
W7d-6L(340)	2.88	2.27	2.11	-618 9 -544 6 -658 5 -584 2			
W7d-7I (4 3 0)	2.00	2.2	2.47	-622 2 -548 3 -656 5 -582 6			
W7d-8L(6,1,0)	3.03	2.50	2.40	-629 2 -553 9 -655 8 -580 5			
W7d-8L(5,2,0)	3.01	2.41	2.52	-626 3 -552 2 -655 2 -581 1			
W7m-6I(43.0)	3.16	2.40	2.33	-625.6 -551.4 -658.9 -584.7			
W7m-7I(43.0)	3 24	2.30	2.49	-625 4 -550 2 -656 3 -581 0			
W8d-6I (3 5 0)	2.92	2.31	2.49	-629.9 -548.5 -666.5 -585.1			
W8d-7I (3,5,0)	2.92	2.33	2.45	-626 3 -543 8 -663 1 -580 6			
W8d-8I (7.1.0)	3.05	2.51	2.50	-641 9 -557 4 -665 2 -580 7			
W8d-8I (5 3 0)	3.02	2.42	2.52	-632.0 -547.8 -659.4 -575.1			
W8m-6I(3,5,0)	3 35	2.71	2.54	-623 3 -540 9 -665 6 -583 1			
W8m-7L (4 4 0)	3 25	2.25	2.45	-632.0 -546.9 -663.2 -578.0			
W8m-8L(6,2,0)	3 34	2.35	2.54	-636.1 -551.5 -662.7 -578.1			
W8m-8I(440)	3 32	2.33	2.51	-633 7 -548 6 -662 3 -577 3			
W8s-7L (5 3 0)	3.81	3 55	2.55	-627 7 -543 3 -660 2 -575 8			
W10d-6L(8,2,0)	2.97	2.33	2.41	-664 9 -561 5 -686 6 -583 2			
W10d-7L(7.3.0)	3.06	2.37	2.48	-655.8 -553.5 -680.3 -578.0			
W10d-8L(9,1,0)	3.07	2.43	2.54	-662.1 -559.1 -679.3 -576.4			
W10d-8L(6.4.0)	2.98	2.35	2.56	-654.6 -551.1 -676.7 -573.2			
W10m-6L(7,3,0)	3.44	2.28	2.44	-661.7 -556.7 -684.8 -579.7			
W10m-7L(6.4.0)	3.47	2.44	2.47	-659.0 -553.6 -681.3 -576.0			
W10m-8L(8.2.0)	3.44	2.40	2.51	-655.4 -550.4 -674.9 -570.0			
W10m-8L(6,4,0)	3.55	2.37	2.53	-657.2 -552.6 -631.0 -526.4			
W10s-6L(5,5,0)	4.36	-	2.39	-654.3 -549.1 -684.4 -579.3			
W10s-7L(6,4,0)	4.31	-	2.46	-646.9 -542.3 -677.0 -572.4			
W12d-6L(8,2,2)	3.04	2.39	2.38	-684.5 -562.9 -702.8 -581.2			
W12d-7L(7,5,0)	3.07	2.38	2.49	-670.4 -548.7 -692.1 -570.4			
W12d-8L(9,1,2)	3.08	2.45	2.53	-678.0 -556.4 -689.9 -568.2			
W12d-8L(8,4,0)	3.06	2.43	2.55	-673.8 -550.1 -689.1 -565.4			
W12m-6L(7,4,1)	3.48	2.38	2.42	-676.7 -552.8 -697.0 -573.2			
W12m-7L(8,4,0)	3.59	2.29	2.49	-678.1 -553.6 -696.1 -571.6			
W12m-8L(7,5,0)	3.48	2.44	2.54	-674.1 -549.4 -689.1 -564.4			
W12m-8L(6,6,0)	3.45	2.42	2.55	-670.3 -546.1 -687.7 -563.5			
	2.04	2 36	2 42	-693 1 -551 6 -712 8 -571 3			

W14d-7L(7,7,0)	3.02	2.40	2.51	-689.8 -546.9 -705.6	-562.7
W14d-8L(12,2,0)	3.12	2.45	2.52	-702.3 -557.9 -709.7	-565.3
W14d-8L(8,5,1)	3.04	2.42	2.56	-692.5 -549.1 -703.0	-559.5
W14m-6L(8,5,1)	3.48	2.31	2.42	-619.9 -550.0 -709.0	-567.1
W14m-7L(8,6,0)	3.57	2.29	2.52	-693.8 -549.0 -710.5	-565.7
W14m-8L(10,4,0)	3.64	2.33	2.54	-695.1 -551.8 -706.3	-563.0
W14m-8L(6,8,0)	3.42	2.41	2.54	-682.9 -539.3 -698.5	-554.9

 ${}^{a}R_{\text{Ca-S}}$, $R_{\text{Ca-OS}}$, and $R_{\text{Ca-O}}$ are the Ca-S, averaged Ca-OS (oxygen of SO₄^{2–}) and Ca-O (oxygen of H₂O) distances in angstrom of $[\text{CaSO}_4(\text{H}_2\text{O})_n]$ (n = 6-8, 10, 12, 14) clusters. ${}^{b}\Delta E_0$ is the zero-point corrected binding energy, and ΔG is the free energy in the gas phase at 298 K and 1 atm. $\Delta E_{0, \text{ solv}}$ and ΔG_{solv} in the aqueous phase were obtained at the PCM-B3LYP/aVDZ level. All the energies are in kcal/mol.

Fig. S4 Stabilization energy vs position of hydrogen bonds for typical $[CaSO_4(H_2O)_n]$ (n = 7, 8, 10) clusters at the B3LYP/aVDZ and MP2/aVDZ levels.

Fig. S5 Typical structures of $[Ca_x(SO_4)_y(H_2O)_n]^{2x-2y}$ (*x*, *y*= 1–2, *n* = 8, 10, 12, 18, 20, 24, 30) clusters obtained at

the B3LYP/aVDZ level. Gray dotted lines indicate hydrogen bonds.

Fig. S6 Stabilization energies (ΔE_s) of $[Ca(SO_4)_2]_{aq}^{2-}$, $[Ca_2SO_4]_{aq}^{2+}$ and $[Ca_2(SO_4)_2]_{aq}^0$ species.

Meanwhile, the stabilities of various $[Ca_x(SO_4)_y]_{aq}^{2x-2y}(x, y = 1-2)$ species can be compared using the stabilization energies (ΔE_s):

$$\Delta E_{\rm s} = E_{[{\rm Ca}_{\rm x}({\rm SO}_4)_{\rm y}]^{2x-2y}, \rm aq} - E_{{\rm CaSO}_4, \rm aq} - (x-1)E_{{\rm Ca}^{2+}, \rm aq} - (y-1)E_{{\rm SO}_4^{2-}, \rm aq}$$

which correspond to the process

$$[\operatorname{CaSO}_4]^0_{\operatorname{aq}} + (x-1)\operatorname{Ca}^{2+}_{\operatorname{aq}} + (y-1)\operatorname{SO}^{2-}_{\operatorname{4,aq}} \rightleftharpoons [\operatorname{Ca}_x(\operatorname{SO}_4)_y]^{2x-2y}_{\operatorname{aq}}$$

Since the solubility of CaSO₄ in an aqueous solution is quite low, the energies of Ca_{aq}^{2+} , $SO_{4,aq}^{2-}$, $[CaSO_4]_{aq}^0$ and $[Ca_x(SO_4)_y]_{aq}^{2x-2y}$ species can be estimated from their hydrated clusters, such as $[Ca(H_2O)_{18}]^{2+,4}$ $[SO_4(H_2O)_{12}]^{2-}$, $[CaSO_4(H_2O)_{12}]$, and $[Ca_x(SO_4)_y(H_2O)_n]^{2x-2y}$ (n = 8, 10, 12, 14, 18, 20, 24, 30) clusters, at the PCM-B3LYP/aVDZ level ($E_{M,aq} = E_{[M(H_2O)_n],aq} - nE_{H_2O,l}$, $M = Ca^{2+}$, SO_4^{2-} , $[CaSO_4]^0$ and $[Ca_x(SO_4)_y]^{2x-2y}$). The energy of H₂O(*l*) is estimated by the sum of the energy of gaseous water molecules and the evaporation energy (10.5 kcal/mol).⁵

Fig. S7 Ca-OS (O site of the SO_4^{2-}) distance as a function of CPMD simulation time during a further 10 ps CPMD simulation with a time step of 5 a.u. and a fictitious mass of 600 a.u.

Fig. S8 Depictions of the systems with 0.009, 0.014, and 0.031 mol/kg concentrations after 10 ns MD simulations at 298 K. Water molecules have been removed to get a clear view of the ion-association situation between Ca²⁺ and SO₄²⁻ ions. The black arrow labels the Ca-S distance. These Ca-S distances in Fig. S8 slightly vibrate around the first peak of $g_{Ca-S}(r)$ (in Fig. 5(a)) at 3.67 Å.

Fig. S9 The radial distribution function (g(r)) represented by the solid lines and the coordination number (CN)

represented by the dashed lines for Mg^{2+} and (a) the S site and (b) the O site (OS) of the SO_4^{2-} anion for different salt concentrations, as obtained from the last 4 ns of the classical MD run.

In the 0.208 mol/kg aqueous MgSO₄ solution, the first peak of $g_{Mg-S}(r)$ at 4.78 Å and $g_{Mg-OS}(r)$ at 4.13 Å in the Fig. S6 indicate that CIP conformers can not been found. However, the Mg-OS distance is at 1.93 Å, with the CN_{Mg-OS} of 0.63, and the Mg-S distance is at 3.38 Å, with the CN_{Mg-OS} of 0.63, in the 2.082 mol/kg aqueous MgSO₄ solution, which show that the CIP structures form at this concentration.

Fig. S10 (a) Temperature dependence of Ca-S coordination number in $0.031 \text{ mol/kg CaSO}_4$ aqueous solutions; (b) Solubility of calcium sulfate dihydrate in water as function of temperature (Data from Marshal et al.⁶ and Knacke et al.⁷).

In order to further examine the relation between ion association and the CaSO₄ solubility, the temperature dependence of ion association in aqueous solution was examined based on the Ca-S coordination number in aqueous CaSO₄ solution (The coordination number of Ca-OS can only partially reveal the degree of ion association). Ion association is strengthened as temperature increases in CaCl₂ solution,⁸ but the situation is different in CaSO₄ solution. The CN_{Ca-S} firstly decreases with increasing temperature (< 313 K), in Fig. S10(a). At about 313 K, there appears to be a minimum for the value of CN_{Ca-S} . Beyond this temperature, there is an abrupt increase of the CN_{Ca-S} , owing to the enhancement of ion association. The bridging hydrogen bonding between water molecules in the hydration layer of Ca²⁺ and the oxygen atom of SO₄²⁻ will be flexible as temperature increases (> 313 K), and thereby the role of such hydrogen bonding on the stabilization

of CaSO₄ will be weakened. It is also interesting to notice that the temperature, at which the CN_{Ca-S} reaches the minimum, roughly coincides with the temperature, at which the observed solubility of calcium sulfate dihydrate reaches a maximum (in Fig. S10(b)).^{6, 7} Therefore, ion and counter-ion association degree in these classical MD simulations at various temperatures, meaningfully shows the experimental solubility trend of calcium sulfate dihydrate with temperature, from the microscopic point of view.

Fig. S11 The radial distribution function (g(r)) represented by the solid lines, and the coordination number (*CN*), represented by the dashed lines for Ca²⁺ and Ca²⁺ in 0.009 mol/kg and 0.031 mol/kg aqueous CaSO₄ solution, as obtained from the last 4 ns of the classical MD run. The relatively close Ca-Ca distance in 0.031 mol/kg aqueous CaSO₄ solution predicts that the strong ion association trend in supersaturated CaSO₄ aqueous solution.

References

- 1. J. Åqvist, J. Phys. Chem., 1990, 94, 8021-8024.
- 2. W. R. Cannon, B. M. Pettitt and J. A. McCammon, J. Phys. Chem., 1994, 98, 6225-6230.
- 3. H. J. C. Berendsen, J. R. Grigera and T. P. Straatsma, J. Phys. Chem., 1987, 91, 6269-6271.
- 4. G. Bai, H. B. Yi, H. J. Li, J. J. Xu, Mol. Phys. 2012, 111, 553-568.
- 5. W. L. Jorgensen, C. Jenson, J. Comput. Chem. 1998, 19, 1179-1186.
- 6. W. L. Marshal and R. Slusher, J. Phys. Chem., 1966, 70, 4015-4027.
- 7. O. Knacke and W. Gans, Zeit. Phys. Chem., NF, 1977, 104, 41.
- 8. Q. Dai, J. J. Xu, H. J. Li and H. B. Yi, Mol. Phys., 2015, 113, 3545-3558.