Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Determination of a paramagnetic concentration inside a diamagnetic matrix by Solid-State NMR

Supplementary Information

Sébastien Maron^{&,*}, Nadège Ollier[‡], Thierry Gacoin[&], Géraldine Dantelle[†]

&Laboratoire de Physique de la Matière Condensée, École polytechnique, CNRS, Université Paris Saclay, 91128 Palaiseau Cedex, France

⁺Laboratoire des Solides Irradiés, École polytechnique, CNRS, CEA, 91128 Palaiseau Cedex, France
[†]Institut Néel CNRS, UPR 2940/Université Grenoble Alpes
25 Av. des Martyrs – 38 042 Grenoble Cedex 09, France

*sebastien.maron@polytechnique.edu

Figure SI-1: ³¹P SSNMR of La_{0.99}Nd_{0.01}PO₄ with a very short repetition time (50 ms) for exalting paramagnetic peaks noted A to F. Q⁰ is the peak corresponding to phosphorous without Nd in the first coordination shell and AM an amorphous phase. Figure previously published in 2014 by Maron et al.¹

Figure SI-2: evolution of FWHM (a) and the area (b) of a paramagnetic peak of La_{1-x}Nd_xPO₄ (peak B at +16 ppm).

Figure SI-3: ratios between the intensities of one paramagnetic peak and the unshifted peak in function of the theoretical values of these ratios for LaPO₄ (paramagnetic peak at +16 ppm).² The dotted line corresponds to y = x, indicating that the real Nd concentration matches the nominal one; numbers indicated the nominal concentrations.

Figure SI-4: NMR spectra of YPO₄:Nd 0.75 %. The attribution is made according to Palke and Stebbins.³ This spectrum is obtained with a short repetition time (50 ms). A to C are paramagnetic peaks, corresponding to ³¹P with Nd³⁺ in their first shell coordination; Q⁰ is the unshifted peak corresponding to ³¹P without Nd³⁺ and AM is an amorphous phase due to an excess of P. Both signals are enhanced by the chosen conditions, i.e. a short relaxation time.

Figure SI-5: evolution of FWHM (a) and the area (b) of a paramagnetic peak of Y_{1-x}Nd_xPO₄ (peak A at +36 ppm).

Figure SI-6: ratios between the intensities of one paramagnetic peak and the unshifted peak in function of the theoretical values of these ratios for YPO₄ (paramagnetic peak at +36 ppm).² The dotted line corresponds to y = x, indicating that the real Nd concentration matches the nominal one; numbers indicated the nominal concentrations.

Figure SI-7: SSNMR spectra of $499P_2O_5$:167MgO:333Na₂O:1Nd₂O₃ glasses with a short repetition time (50 ms) to try to enhance paramagnetic peaks. Q⁰ corresponds to the ³¹P with no Nd³⁺ in its vicinity and stars design spinning bands ($\omega_{rot} = 15 \text{ kHz}$).

Figure SI-8: variation of $1/T_1$ in function of the concentration C (expressed in mol/cm³) for very low level doping.

- 1. S. Maron, G. Dantelle, T. Gacoin and F. Devreux, *Physical Chemistry Chemical Physics*, 2014, 16, 18788-18798.
- 2. A. C. Palke, J. F. Stebbins and L. A. Boatner, *Inorganic Chemistry*, 2013, **52**, 12605-12615.
- 3. A. C. Palke and J. F. Stebbins, *American Mineralogist*, 2011, 96, 1343-1353.