The Staging Mechanism of AlCl₄ Intercalation in Graphite Electrode for

Aluminium-ion Battery

Preeti Bhauriyal,[†] Arup Mahata,[†] Biswarup Pathak, ^{†,#,*}

[†]Discipline of Chemistry, and [#]Centre for Material Science and Engineering Indian Institute of Technology (IIT) Indore, Indore, M.P. 453552, India

Email: <u>biswarup@iiti.ac.in</u>

Contents

Table S1: Geometrical parameters for the $AlCl_4$ intercalated structure at different sites; relative energy (ΔE) with respect to the B2 site, C-C bond lengths (d^{C-C}) and interlayer spacing between graphite layers.

Sites	$\Delta \mathbf{E}$ (eV)	$d^{C-C}(\text{\AA})$	d (Å)
B1	0.009	1.423	8.639
B2	0.000	1.423	8.594
Н	0.013	1.422	8.633
Т	0.006	1.423	8.622

Figure S1: Schematic representation of the most stable B2 site.

Figure S2: Molecular dynamics simulation analysis at different temperatures as a function of time step and the obtained structures, (a) 300K, (b) 400 K, (c) 500 K and (d) 600 K.

Figure S3: Side view of $6 \times 6 \times 2$ supercell of graphite for stage-1, showing the arrangement of AlCl₄ ions in different stoichiometries considered: (a) $(AlCl_4)_4C_{288}$, (b) $(AlCl_4)_4C_{288}$, (c) $(AlCl_4)_4C_{288}$ and (d) $(AlCl_4)_4C_{288}$.

Figure S4: Side view of $6 \times 6 \times 2$ supercell of graphite for stage-2, showing the arrangement of AlCl₄ ions in different stoichiometries considered: (a) $(AlCl_4)_2C_{288}$, (b) $(AlCl_4)_4C_{288}$, (c) $(AlCl_4)_6C_{288}$ and (d) $(AlCl_4)_8C_{288}$.

Figure S5: Side view of $6 \times 6 \times 3$ supercell of graphite for stage-3, showing the arrangement of AlCl₄ ions in different stoichiometries considered: (a) $(AlCl_4)_2C_{432}$, (b) $(AlCl_4)_4C_{432}$, (c) $(AlCl_4)_6C_{432}$ and (d) $(AlCl_4)_8C_{432}$.

Figure S6: Side view of $6 \times 6 \times 2$ supercell of graphite for stage-4, showing the arrangement of AlCl₄ ions in different stoichiometries considered: (a) $(AlCl_4)_1C_{288}$, (b) $(AlCl_4)_2C_{288}$, (c) $(AlCl_4)_3C_{288}$ and (d) $(AlCl_4)_4C_{288}$.

(a)
$$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & &$$

Figure S7: Binding energy per molecule for all stages of AlCl₄ as a function weight percentage of AlCl₄ in $(AlCl_4)_x C_{288}$.

Table S2: Net effective charge calculated by Bader charge analysis.

Systems	Bader Charge e		
	Al	Cl	Nearest C
AlCl ₄	+2.347	-0.587	
Graphite			+0.009
AlCl ₄ intercalated graphite	+2.345	-0.801	+0.028