1

## **Supporting Information for**

## CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> films prepared by combining 1- and 2-step deposition: How crystal growth conditions affect properties

Muhamad Z. Mokhtar<sup>a,\*</sup>, Mu Chen<sup>a</sup>, Eric Whittaker<sup>c</sup>, Bruce Hamilton<sup>c</sup>, Nicholas Aristidou<sup>d</sup>, Simko Ramadan<sup>a,b</sup> Ali Gholinia<sup>a</sup>, Saif A. Haque<sup>d</sup>, Paul O'Brien<sup>a,b</sup>, and Brian R. Saunders<sup>a,\*</sup>

- a) School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, U.K.
- b) School of Chemistry, University of Manchester, Manchester, M13 9PL, U.K.
- c) Photon Science Institute, University of Manchester, Alan Turing Building, Oxford Road, Manchester, M13 9PL, U.K.
- d) Department of Chemistry and Centre for Plastic Electronics, Imperial College London, South Kensington Campus, SW7 2AZ



**Figure S1.** (a) SEM image of 1 & 2-s *precursor* film prepared using x = 0.66. The sample was analysed using EDX at the points shown. Points #1 to #3 correspond to the microcrystals. Point #4 probed the mp-TiO<sub>2</sub> layer containing 0.66MAPbI<sub>3</sub> and 0.34PbI<sub>2</sub> (i.e., 27.0 atomic% Pb<sup>2+</sup>) according to Scheme 1a. For comparison PbI<sub>2</sub> contains 33 atomic% Pb<sup>2+</sup>. (b) Table of atomic % values from the points shown in (a). EDX spectra for (c) Point #1 and (d) Point #4. These data show that microcrystals (with nanocrystals at the surface) were Pb<sup>2+</sup> rich compared to theory (27.0 mol.%) and Point #4.



**Figure S2** Polarised light optical microscopy images (a - e) for various *final* MAPbI<sub>3</sub> films prepared with different solution *x* values (shown). (a) and (e) correspond to 2-s and 1-s methods, respectively. (b) to (d) were prepared using the 1 & 2-s method. (See Scheme 1c) The inset for (a) shows the analyser (A) and polariser (P) directions used.



**Figure S3** Effect of *x* for the  $PbI_2 + xMAI$  solutions used to prepare the precursor films on the average meso-crystal size for the *final* MAPbI<sub>3</sub> films shown in Fig. 1b. The combined 1 & 2-s method used x = 0.33, 0.50 and 0.66. Note that x = 0 corresponds to the 2-s method. Meso-crystals were not evident for the 1-s (x = 1.0) film.



**Figure S4**. Example of image used for calculation of the % coverage. This SEM image was obtained for the *final* 1 & 2-s film prepared using x = 0.66 and is taken from Fig. 1b. The yellow outline was used to delineate the crystals from the background. The automated threshold was conducted using Image J software and included only the dark black areas (pinholes). The % coverage was determined by subtracting the total pinhole area from the total area of the image and normalising the difference with the total image area.



**Figure S5** (a) X-ray diffractograms for *final* MAPbI<sub>3</sub> films prepared using the 2-s method (x = 0) – See Scheme 1b. The immersion time was varied as shown. (b) Variation of the % of amplitude of the MAPbI<sub>3</sub> (110) peak with x (see text). (c) Images of the films used for (a).



**Figure S6.** SEM cross section of an ITO/bl-TiO<sub>2</sub>/mp-TiO<sub>2</sub>/MAPbI<sub>3</sub>/Spiro-MeOTAD/Au device that contained a MAPbI<sub>3</sub> photoactive layer prepared using the 1 & 2-s method (x = 0.5). EDX line scanning data are shown for Pb and I. The scanning was performed perpendicular to the film surface starting from the HTM. Points #A and #B probed the compositions near the surface and deep within the photoactive layer. The atomic % values measured for Points #A and #B are shown in the table.



**Figure S7** Representative SEM image for  $mp-TiO_2$ . The scale bar represents 100 nm. The pore size distribution is shown.



**Figure S8** Expanded view of PL spectra for the final MAPbI<sub>3</sub> films from Fig. 5a. The values for x are shown in the legend. A calculated spectrum for x = 0.75 is shown which was obtained by using  $F = 1.5 \times (0.25F_0 + 0.75F_{1.0})$  where  $F_o$  and  $F_{1.0}$  are the measured fluorescence intensities for the x = 0 and 1.0 films, respectively.



**Figure S9.** Transient absorption spectroscopy data for mp-TiO<sub>2</sub>/MAPbI<sub>3</sub>/*spiro*-MeOTAD. The legend shows the values for x used for the preparation of the films. The architecture of the device used for these experiments is also shown.



**Figure S10** (a) *J-V* curve for the best 1 & 2-s (x = 0.33) cells. (b) Relationship between PCE and  $J_{sc}$  for devices prepared using P3HT (black open diamonds) or spiro-OMeTAD (red open diamonds) as the HTM.

| xMAI | HTM   | $\mathbf{J}_{\mathbf{sc}}$ | Voc           | FF            | PCE              | Hysteresis      |
|------|-------|----------------------------|---------------|---------------|------------------|-----------------|
|      |       | (mAcm <sup>-2</sup> )      | <b>(V)</b>    |               | (%)              | (%)             |
| 0    | P3HT  | $11.98\pm3.02$             | $0.83\pm0.09$ | $0.39\pm0.09$ | $4.23 \pm 1.14$  | $15.1\pm1.9$    |
| 0.33 |       | $9.98 \pm 1.14$            | $0.84\pm0.06$ | $0.37\pm0.05$ | $3.04\pm0.44$    | $8.75\pm0.88$   |
| 0.50 |       | $7.85\pm0.44$              | $0.83\pm0.03$ | $0.36\pm0.04$ | $2.35\pm0.45$    | $6.60\pm0.73$   |
| 0.66 |       | $6.73 \pm 1.07$            | $0.81\pm0.07$ | $0.39\pm0.05$ | $2.17\pm0.68$    | $4.33\pm0.52$   |
| 1.0  |       | $6.38\pm0.8$               | $0.68\pm0.17$ | $0.41\pm0.09$ | $1.90\pm0.95$    | $2.42\pm0.38$   |
|      |       |                            |               |               |                  |                 |
| 0    | SPIRO | $24.2\pm0.21$              | $0.85\pm0.02$ | $0.51\pm0.04$ | $10.32\pm0.86$   | $16.3\pm1.86$   |
| 0.33 |       | $21.9\pm0.50$              | $0.86\pm0.01$ | $0.46\pm0.02$ | $8.64\pm0.55$    | $8.40\pm0.70$   |
| 0.50 |       | $18.8 \pm 1.5$             | $0.86\pm0.01$ | $0.44\pm0.05$ | $7.04\pm0.63$    | $7.43\pm0.73$   |
| 0.66 |       | $16.3\pm1.4$               | $0.86\pm0.01$ | $0.44\pm0.02$ | $6.17\pm0.97$    | $5.25\pm0.76$   |
| 1.0  |       | $13.6\pm0.5$               | $0.84\pm0.01$ | $0.46\pm0.02$ | $5.19\ \pm 0.34$ | $3.35 \pm 1.42$ |
|      |       |                            |               |               |                  |                 |

**Table S1**: Photovoltaic performance data for perovskite devices measured using the forward $scan.^{a}$ 

<sup>*a*</sup> The  $\pm$  values are standard deviations.