

Supplementary Information

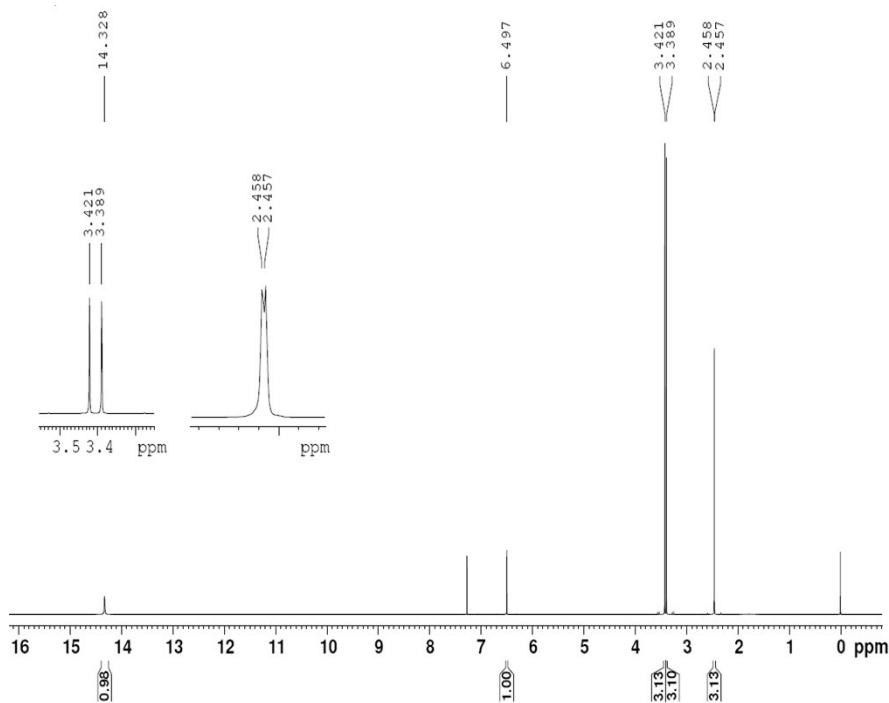
A study on one-step laser nanopatterning onto copper-hydrazone-complex thin films and its mechanism

Kui Zhang^{1,3,4}, Zhimin Chen^{2,4}, Jingsong Wei^{1}, Tao Wei^{1,3}, Youyong Geng¹, Yang Wang¹, and Yiqun Wu^{1,2**}*

¹ Lab of High Density Optical Storage, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, P. R. China

² Key Lab of Functional Inorganic Material Chemistry (Ministry of Education of China), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China

³ University of Chinese Academy of Sciences, Beijing 100049, China


⁴ Joint first authors

Corresponding authors: *weijingsong@siom.ac.cn; **yqwu@siom.ac.cn

1 Synthesis of the hydrazone ligand (HL)

The hydrazone ligand (HL) was synthesized using a diazo component (3-Amino-5-methylisoxazole) and a coupling component (1, 3-dimethylbarbituric acid) according to the published methods [1-3]. Typically, 3-amino-5-methylisoxazole (2.00 g, 0.020 mol) was dissolved in 40 mL concentrated phosphoric acid (85%) at room temperature. The solution was then cooled to -5–0 °C in an ice-salt bath and maintained at this temperature while a solution of sodium nitrite (1.52 g, 0.022 mol) in water (10 mL) was then added dropwise within 1 h under continuous stirring, and the ensuing mixture was stirred at 0–5 °C for a further 1 h. The resulting diazonium solution was then used directly for the next step. The 1,3-dimethylbarbituric acid

(3.44 g, 0.022 mol) was dissolved in sodium hydroxide solution (150 mL, 2.5%) and cooled to -5–0 °C in an ice-salt bath. The above diazonium solution was added to the stirred coupling component solution at -5–0 °C for 30 minutes. The mixture was allowed to rise to room temperature over 4 hours and the pH value was lowered to about 5. The precipitated solid was collected by filtration, washed with water, and then vacuum dried. The rough product was finally recrystallized from ethanol/ water mixtures (3:1) to form white crystals. Yield: 5.30 g (90.0%). M.p. 193–195 °C. Anal. Calcd (found) for $C_{10}H_{11}N_5O_4$: C, 45.28 (45.25); H, 4.18 (4.14); N, 26.41 (26.38). 1H NMR ($CDCl_3$, TMS, δ ppm): 2.457(s, 3H, CH_3), 3.389(s, 3H, CH_3), 3.421(s, 3H, CH_3), 6.497(s, 1H, isoxazole-H), 14.328 (s, br, 1H, hydrazone NH). UV-Vis spectra in chloroform: λ_{max} (nm)($\log \epsilon$) = 352(4.39). FT-IR spectra (KBr pellets, cm^{-1}): 3155($\nu H-N$, hydrazone), 1732($\nu C=O$), 1676($\nu C=O$), 1649($\nu C=O \cdots H$), 1608($\nu CH=N$, isoxazole), 1512($\nu N-N=C$, azo methine), 922($\nu N-H \cdots O$). EI-MS Found(Calcd): m/z = 265(265)[M^+].

Fig. S1 1H -NMR of the *HL*.

2 Synthesis of the CuL_2 complex

The CuL_2 was prepared by the same general method: the resulting hydrazone ligand

(HL) (0.50 g, 1.81 mmol) was dissolved in absolute methanol solution (20 mL) at room temperature and the copper(II) acetate (0.18 g, 1.00 mmol) in powders was added under vigorous stirring. The ensuing mixture was stirred under reflux for further 4–5 h. After cooling, the precipitated solid was collected by filtration, washed with water and then vacuum dried. The acquired products were characterized and used directly without further purification. Brown powder. Yield: 96.1%. M.p. > 230 °C (dec.). Anal. Calcd (found) for $C_{20}H_{20}N_{10}O_8Cu$: C, 40.58 (40.69); H, 3.41 (3.53); N, 23.66 (23.74); Cu, 10.73 (10.61). UV-Vis spectra in chloroform: λ_{max} (nm)(log ϵ)= 378(4.53). MALDI-MS Calcd (Found): m/z = 591.08 (592.0834) [M+H $^+$].

M170567 #6 RT: 0.3292 AV: 1 NL: 8.93E3
T: FTMS + p MALDI Full ms [150.00-1500.00]

Fig. S2 MALDI-MS of CuL_2 complex

- [1] Z. Chen, Y. Wu, C. He, B. Wang, D. Gu and F. Gan, *Synth. Metal*, 2010, **160**, 2581.
- [2] Z. Chen, F. Huang, Y. Wu, D. Gu and F. Gan, *Inorg. Chem. Commun.*, 2006, **9**, 21.
- [3] Z. Chen, Y. Wu, D. Gu and F. Gan, *Dyes and Pigments*, 2010, **86**, 42.