Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Temperature-Modulated Crystal Growth and Performance for Highly Reproducible and Efficient Perovskite Solar Cells

Tongyu Su, abc Xinhang Li, a Yongzhuan Zhang, a Fapei Zhang*a and Zhigao Sheng*ac

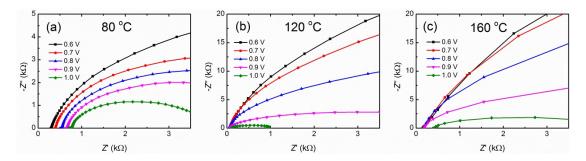


Fig. S1 Nyquist plots at different bias for the devices prepared at various $T_{\rm a}$.

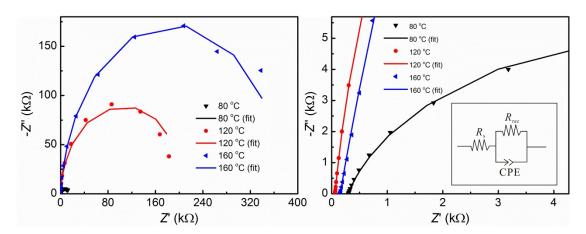
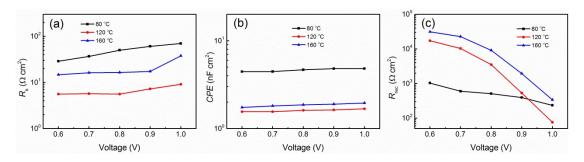
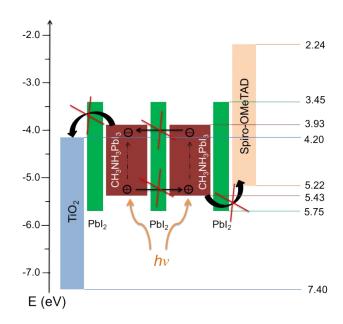



Fig. S2 (a) Nyquist plots at 0.6 V for devices with the perovskite films prepared at various T_a . (b) A zoom-in of the high-frequency region of Nyquist plots. Inset is equivalent circuit for fitting IS.


^aHigh Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.

^bUniversity of Science and Technology of China, Hefei 230026, China.

^cCollaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.

Fig. S3 (a) Series resistance (R_s) , (b) constant phase element (CPE), and (c) recombination resistance (R_{rec}) as a function of bias.

Fig. S4 Energy band gap diagram of the device at $T_a > 120$ °C