ESI1

Electronic Supplementary Information

Entropy in Multiple Equilibria, Theory and Applications
 Gion Calzaferri

Table of Contents

ESI1. Derivation of equation (14)
ESI2. Derivation of equation (15)
ESI3. Experimental equilibrium constants K_{1} and K_{2} of dicarboxylic acids $\mathrm{HOOC}-\left(\mathrm{CH}_{2}\right)_{m}-\mathrm{COOH}$
ESI4. Derivation of the equations (29) and (29A)
ESI5. Comparison of the Langmuir isotherm with the sum of the concentrations of bound X
ESI6. Derivation of Equation (9)

ESI1. Derivation of equation (14)
$Z X_{r c-1}+X \rightleftarrows Z X_{r c} K_{r c}$
$K_{r c}=\frac{\left[Z X_{r c}\right] c^{\varnothing}}{\left[Z X_{r c-1}\right][X]}$
$\prod_{j=1}^{r c} K_{j}=\frac{\left[Z X_{1}\right]\left[Z X_{2}\right]}{[Z]\left[Z X_{1}\right]} \cdot \ldots \cdot \frac{\left[Z X_{r c-1}\right]\left[Z X_{r c}\right]}{\left[Z X_{r c-2}\right]\left[Z X_{r c-1}\right]} \cdot\left(\frac{c^{\emptyset}}{[X]}\right)^{r c}$
From this we obtain for $r c=n$ the desired expression (14):
$Z+n X \rightleftarrows Z X_{n} K_{\text {tot }}$
$K_{\text {tot }}=\frac{\left[Z X_{n}\right]}{[Z]}\left(\frac{c^{\varnothing}}{[X]}\right)^{n}=\prod_{r c=1}^{n} K_{r c}$
ESI2. Derivation of equation (15)
We evaluate the product, eqn (14):
$K_{\text {tot }}^{p d}=\prod_{r c=1}^{n} K_{r c}^{p d} \quad K_{r+1}^{p d}=K_{r}^{p d} \frac{r \quad n-r}{r+1 n-r+1}$
It is convenient to introduce the following abbreviation:
$f(r)=\frac{r \quad n-r}{r+1 n-r+1}$
This allows us to write:
$K_{r+1}^{p d}=K_{r}^{p d} f(r)$
Using this we can write the following sequence of equations, which finally lead to the desired result:
$K_{\text {tot }}^{p d}=K_{1}^{p d} \cdot K_{2}^{p d} \cdot K_{3}^{p d} \cdot \cdot \ldots K_{n-2}^{p d} \cdot K_{n-1}^{p d} \cdot K_{n}^{p d}$
$K_{\text {tot }}^{p d}=K_{1}^{p d} \cdot K_{1}^{p d} f(1) \cdot K_{2}^{p d} f(2) \cdot \ldots K_{n-3}^{p d} f(n-3) \cdot K_{n-2}^{p d} f(n-2) \cdot K_{n-1}^{p d} f(n-1)$
$K_{t o t}^{p d}=\ldots$

$$
\begin{align*}
& K_{\text {tot }}^{p d}=\left(K_{1}^{p d}\right)^{n} \cdot\{f(1) \cdot f(1) f(2) \cdot \ldots \cdot \ldots \cdot f(1) f(2) f(3) \ldots f(n-3) f(n-2) f(n-1)\} \\
& K_{\text {tot }}^{p d}=\left(K_{1}^{p d}\right)^{n} \cdot\left\{f(1) \cdot \prod_{r=1}^{2} f(r) \cdot \prod_{r=1}^{3} f(r) \cdot \ldots \cdot \prod_{r=1}^{n-2} f(r) \cdot \prod_{r=1}^{n-1} f(r)\right\} \\
& K_{\text {tot }}^{p d}=\left(K_{1}^{p d}\right)^{n} \cdot\left\{f(1)^{n-1} f(2)^{n-2} \ldots f(n-1)^{1}\right\}=\left(K_{1}^{p d}\right)^{n} \prod_{r=1}^{n-1} f(r)^{n-r} \\
& K_{\text {tot }}^{p d}=\left(\frac{K_{1}^{p d}}{n}\right)^{n} \tag{S10}
\end{align*}
$$

ESI 3 . Experimental equilibrium constants K_{1} and K_{2} of dicarboxylic acids $\mathrm{HOOC}-\left(\mathrm{CH}_{2} 2_{2}-\mathrm{COOH}\right.$

m	0	1	2	3	4	5	6	7	8
K_{I}	$10^{-1.27}$	$10^{-2.85}$	$10^{-4.21}$	$10^{-4.34}$	$10^{-4.41}$	$10^{-4.5}$	$10^{-4.526}$	$10^{-4.55}$	$10^{-4.55}$
K_{2}	$10^{-4.27}$	$10^{-5.05}$	$10^{-5.41}$	$10^{-5.41}$	$10^{-5.41}$	$10^{-5.43}$	$10^{-5.498}$	$10^{-5.498}$	$10^{-5.498}$
PubChem CID	971	867	1110	743	196	385	10457	2266	5192

ESI4. Derivation of the equations (29) and (29A)

We start with the hypothesis that eqns $(21,23)$ are equivalent to Langmuir's isotherm equation and we test if this hypothesis is valid. For this we write:
$\frac{[X] A}{1+[X] B}=\frac{[X] \frac{1}{n} K_{1}+[X]^{2} \frac{2}{n} K_{1} K_{2}+\ldots+[X]^{n} K_{1} K_{2} \ldots K_{n}}{1+[X] K_{1}+[X]^{2} K_{1} K_{2}+\ldots+[X]^{n} K_{1} K_{2} \ldots K_{n}}=\frac{[X]\left(\frac{1}{n} K_{1}+[X] \frac{2}{n} K_{1} K_{2}+\ldots+[X]^{n-1} K_{1} K_{2} \ldots K_{n}\right)}{1+[X]\left(K_{1}+[X]^{2} K_{1} K_{2}+\ldots+[X]^{n-1} K_{1} K_{2} \ldots K_{n}\right)}$
Using $\kappa_{i}=K_{1} K_{2} \ldots K_{i}$ we write:
$\frac{[X] A}{1+[X] B}=\frac{[X]\left(\frac{1}{n} \kappa_{1}+[X]-\frac{2}{n} \kappa_{2}+\ldots+[X]^{n-1} \kappa_{n}\right)}{1+[X]\left(\kappa_{1}+[X]^{2} \kappa_{2}+\ldots+[X]^{n-1} \kappa_{n}\right)}$
The following relation must hold if the hypothesis is correct:
$\frac{[X] A}{1+[X] B}=\frac{[X] K_{L}}{1+[X] K_{L}}$
We multiplying (S13) with $(1+[X] B)\left(1+[X] K_{L}\right)$:
$[X] K_{L}+[X]^{2} K_{L} B=[X] A+[X]^{2} K_{L} A$
Multiplying this with $\frac{1}{[X]}$ leads to:
$K_{L}+[X] K_{L} B=A+[X] K_{L} A$
We insert the expressions for A and B from (S12):
$K_{L}+[X] K_{L}\left(\kappa_{1}+[X]^{2} \kappa_{2}+\ldots+[X]^{n-1} \kappa_{n}\right)=$
$\left(\frac{1}{n} \kappa_{1}+[X] \frac{2}{n} \kappa_{2}+\ldots+[X]^{n-1} \kappa_{n}\right)+[X] K_{L}\left(\frac{1}{n} \kappa_{1}+[X] \frac{2}{n} \kappa_{2}+\ldots+[X]^{n-1} \kappa_{n}\right)$

Equation (S16) can be rearranged in order to obtain (S17):
$K_{L}-\frac{1}{n} \kappa_{1}=[X] \frac{2}{n} \kappa_{2}+\ldots+[X]^{n-1} \kappa_{n}+[X] K_{L}\left(\kappa_{1}\left(\frac{1}{n}-1\right)+[X]^{2}\left(\frac{2}{n}-1\right) \kappa_{2}+\ldots+[X]^{n-2}\left(\frac{n-1}{n}-1\right) \kappa_{n-1}\right)$
Ordering (S17) according to the power of [X]:
$K_{L}-\frac{1}{n} \kappa_{1}=[X]\left(\frac{2}{n} \kappa_{2}+\kappa_{1}\left(\frac{1}{n}-1\right) K_{L}\right)+[X]^{2}\left(\frac{3}{n} \kappa_{3}+\left(\frac{2}{n}-1\right) \kappa_{2} K_{L}\right) \ldots+[X]^{n-1}\left(\kappa_{n}+\left(\frac{n-1}{n}-1\right) \kappa_{n-1} K_{L}\right)$
Equation (S18) hold for all physically accessible and reasonable concentration values of $[X]$. This is only possible if the right side of (S18) is equal to zero. From this we know that eqn (S18) holds for:
$K_{L}-\frac{1}{n} \kappa_{1}=0$
This result means that we can write eqn (S20) which corresponds to the eqns (29) and (29A):
$\Theta=\frac{K_{L}[X]}{1+K_{L}[X]} \quad$ with $\quad K_{L}=\frac{1}{n} K_{1}$

ESI5. Comparison oft the Langmuir isotherm with the sum of the concentrations of bound X
We graphically compare equations (21)-(23) with Langmuir's eqn $(29,29 \mathrm{~A})$ for $n=48$ equilibrium reactions and two different values for K_{l}. It is no surprise that they mach perfectly well because (29) is a consequence of (21)-(23).

Fig. S1 Comparison of the Langmuir isotherm eqn (29) (yellow solid) and with the sum of the concentrations of bound X, eqns (21)-(23), (red, dots) as a function of the concentration of free X, shown for 48 equilibria, hence, $n=48$, and for two values of K_{l}, namely 0.1 and $0.01 .{ }^{[X]}{ }_{\text {tot }}$ is divided by 48 in order to scale it to the value range of the Langmuir function Θ. δ indicated the difference between the numerical values of $\Theta([\mathrm{X}])$ and $[X]_{t o t}([X])$.

ESI6. Derivation of equation (9)

In order to solve the eqns (33A) and (33B) we write them as differential equations with the initial condition (33C).
$\frac{d N_{0}}{d n}=-p_{0} N_{0}$
$\frac{d N_{b}}{d n}=p_{b-1} N_{b-1}-p_{b} N_{b} ; \quad B \geq b \geq 1$

We solve eq S11, using eqn (18) for $b=0$:
$\int \frac{d N_{0}}{N_{0}}=-\int p_{0} d n \underset{\text { with }}{ } p_{0}=\frac{B}{B N-n}$
The result reads as follows:
$\ln N_{0}=-\int \frac{B}{B N-n} d n=B \ln (B N-n)+\ln C_{0}$
$N_{0}=C_{0}(B N-n)^{B}$
The integration constant C_{0} follows from the initial condition (33C).
The solution of eqn (S22) is found by first solving it for N_{l} and then solving it for N_{2}.
The solution for the general case N_{b} is readily found from this.
$\frac{d N_{1}}{d n}+\frac{B-1}{B N-n} N_{1}=\frac{B}{B N-n} N_{0}$
We insert the result (S23C) for N_{0} :
$\frac{d N_{1}}{d n}+\frac{B-1}{B N-n} N_{1}=\frac{B}{B N-n} C_{0}(B N-n)^{B}$
It is convenient to write the solution of (S24A) as follows: ${ }^{[1 \mathrm{~S}, 2 \mathrm{~S}]}$
$N_{1}=G(n)^{U(n)}$
and then to determine $U(n)$ and $G(n)$:
$U(n)=-\int \frac{B-1}{B N-n} d n=(B-1) \ln (B N-n)+C_{11}$
$G(n)=\int \frac{B}{B N-n} C_{0}(B N-n)^{B} e^{-(U(n)} d n$
Rearrangement and simplification leads to (S24E) and then (S24F):
$G(n)=B C_{0} \int(B N-n)^{B-1} e^{-(B-1) \ln (B N-n)+C_{11}} d n$
$G(n)=B C_{0} \int e^{-C_{11}} d n=B C_{0}\left(n+C_{10}\right) e^{-C_{11}}$
Inserting (S24C) and (S24F) in (S24B) leads to
$N_{1}=B C_{0}\left(n+C_{10}\right) e^{-C_{11}} e^{(B-1) \ln (B N-n)+C_{11}}$
This equation simplifies to the solution (S15) we have been searching for:
$N_{1}=B C_{0}\left(n+C_{10}\right)(B N-n)^{(B-1)}$
The solution (S16) for N_{2} is readily found by the same procedure:
$N_{2}=B C_{0}(B-1)\left(\frac{n^{2}}{2}+n C_{10}+C_{20}\right)(B N-n)^{(B-2)}$
On the basis of the solution (S23C), (S25), and (S26) for N_{0}, N_{l} and N_{2} we find the general solution for N_{b} to read as follows:

ESI5

$N_{b}(n, B, N)=\frac{B!C_{0}}{(B-b)!}(B N-n)^{(B-b)} \sum_{i=0}^{b} C_{i 0} \frac{n^{b-1}}{(b-1)!}$
Inserting the solution (S27) into (S22) we find that the initial condition (28C) is fulfilled if we use eqn (S28).
$C_{0}=\frac{B}{(B N)^{b}}, \quad C_{00}=1$, and $C_{b 0}=0$ for $b>0$
$\sum_{i=0}^{b} C_{i 0} \frac{n^{b-1}}{(b-1)!}=\frac{n^{b}}{b!}$

Insertion of the results (S28) and (S28A), which are a consequence of the initial condition (28C), into eqn (S27) leads readily to the eqn (9) we have been searching for.
[1S] W. I. Smirnow, Lehrgang der Höheren Mathematik, Teil II, Deutscher Verlag der Wissenschaft, Berlin 1966.
[2S] H. G. Zachmann, Mathematik für Chemiker, VCH, Weinheim, 1990, ISBN 3-527-25930-0.

