Supporting Information

Nucleation-dependant Chemical Bonding Paradigm: Effect of

Rare Earth Ions on the Nucleation of Urea in Aqueous Solution

Xiaoyan Chen,^{a,b} Congting Sun,^a Sixin Wu,^{*,b} and Dongfeng Xue^{*,a}

^aState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

^bThe Key Laboratory for Special Functional Materials of MOE, Henan University, Kaifeng, Henan 475004, China

*Corresponding author. E-mail: dongfeng@ciac.ac.cn

Figure S1. Time-dependent ATR-IR spectra of urea crystallization process at 20 °C. The time interval is 30 s, and the concentration of urea is 6.66 mol/L.

Figure S2. Time-dependent IR spectra of urea crystallization process in urea+LaCl₃ aqueous solution. The time interval is 30 s, and the concentration of LaCl₃ is 0.077 mol/L.

Figure S3. Time-dependent IR spectra of urea crystallization process in urea+GdCl₃ aqueous solution. The time interval is 30 s, and the concentration of GdCl₃ is 0.077 mol/L.

Figure S4. Time-dependent IR spectra of urea crystallization process in urea+LuCl₃ aqueous solution. The time interval is 30 s, and the concentration of LuCl₃ is 0.077 mol/L.

Figure S5. Time-dependent IR spectra of urea crystallization process in urea+LaCl₃ aqueous solution. The time interval is 30 s, and the concentration of LaCl₃ is 0.155 mol/L.

Figure S6. Time-dependent IR spectra of urea crystallization process in urea+ $GdCl_3$ aqueous solution. The time interval is 30 s, and the concentration of $GdCl_3$ is 0.155 mol/L.

Figure S7. Time-dependent IR spectra of urea crystallization process in urea+LuCl₃ aqueous solution. The time interval is 30 s, and the concentration of LuCl₃ is 0.155 mol/L.

Figure S8. Time-dependent IR spectra of urea crystallization process in urea+LaCl₃ aqueous solution. The time interval is 30 s, and the concentration of LaCl₃ is 0.310 mol/L.

Figure S9. Time-dependent IR spectra of urea crystallization process in urea+GdCl₃ aqueous solution. The time interval is 30 s, and the concentration of $GdCl_3$ is 0.310 mol/L.

Figure S10. Time-dependent IR spectra of urea crystallization process in urea+LuCl₃ aqueous solution. The time interval is 30 s, and the concentration of LuCl₃ is 0.310 mol/L.

Figure S11. Time-dependent IR spectra of urea crystallization process in urea+LaCl₃ aqueous solution. The time interval is 30 s, and the concentration of LaCl₃ is 0.615 mol/L.

Figure S12. Time-dependent IR spectra of urea crystallization process in urea+GdCl₃ aqueous solution. The time interval is 30 s, and the concentration of GdCl₃ is 0.615 mol/L.

Figure S13. Time-dependent IR spectra of urea crystallization process in urea+LuCl₃ aqueous solution. The time interval is 30 s, and the concentration of LuCl₃ is 0.615 mol/L.

Figure S14. Raman spectra of NCN stretching vibrations in crystalline urea from urea/LnCl₃ aqueous solutions, and concentration of LnCl₃ are 0.077 mol/L(A) and 0.615 mol/L (B).