ESI for "An adaptive mutation simulated annealing based investigation on Coulombic explosion and identification of dissociation patterns in $(CO_2)_n^{2+}$ clusters"

Pulak Naskar,^{1, a)} Srijeeta Talukder,^{2, b)} and Pinaki Chaudhury^{1, c)} ¹⁾ Department of Chemistry, University of Calcutta, 92 A P C Road, Kolkata 700 009, India ²⁾ Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India

Keywords: Adaptive Mutation Simulated Annealing (AMSA), Molecular Cluster, $(CO_2)_n^{2+}$ cluster, Coulomb Explosion

^{a)}Electronic mail: pulakchem91@gmail.com

^{b)}Electronic mail: srijeeta.chem@gmail.com: Corresponding author

^{c)}Electronic mail: pinakc@rediffmail.com: Corresponding author

I. ACKNOWLEDGEMENT :

P.N. wants to thank Council of Scientific & Industrial Research: Human Resource Development Group, New Delhi, India for the award of a Senior Research Fellowship [09/028(0938)/2014-EMR-I Date: 01/11/2016] and S.T. wants to thank Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India for granting a research fellowship.

REFERENCES

- ¹A. K. Pathak, T. Mukherjee and D. K. Maity, J. Chem. Phys., **124**, 024322(2006).
- ²A. K. Pathak, T. Mukherjee and D. K. Maity, J. Chem. Phys., **125**, 094309(2006).
- ³A. K. Pathak, T. Mukherjee and D. K. Maity, Chem. Phys. Chem., **11**, 220-228(2010).
- ⁴P. Naskar and P. Chaudhury, RSC Adv., 6, 12315-12325(2016).
- ⁵S. G. Neogi, P. Chaudhury, J. Comp. Chem., **33**, 629-639(2012).
- ⁶S. G. Neogi, P. Chaudhury, J. Comp. Chem., **34**, 471-491(2013).
- ⁷S. Guha, S. G. Neogi, P. Chaudhury, J. Chem. Sci., **126**, 659-675(2014).
- ⁸A. K. Pathak, T. Mukherjee and D. K. Maity, Chem. Phys. Lett., **454**,17-23(2008).
- ⁹A. K. Pathak, T. Mukherjee and D. K. Maity, J. Chem. Phys., **127**, 044304(2007).
- ¹⁰P. Naskar and P. Chaudhury, Phys. Chem. Chem. Phys., **18**, 16245-16257(2016).
- ¹¹O. Echt, D. Kreisle and E. Recknagel, Phys. Rev. A, **38**, 3236-3248(1988).
- ¹²N. G. Gotts, P. G. Lethbridge and A. J. Stace, J. Chem. Phys., **96**, 408(1992).
- ¹³K. Sattler, J. Muhlbach, O. Echt, P. Pfau and E. Recknagel, Phys. Rev. Lett., 47, 160(1981).
- ¹⁴C. W. Walter, Y. K. Bae, D. C. Lorents and J. R. Peterson, Chem. Phys. Lett., **195**, 543(1992).
- ¹⁵E. Ruhl, C. Heinzel, H. Baumgartel, M. Lavolle and P. Morin, Z. Phys. D, **31**, 245(1994).
- ¹⁶K. Ishikawa and T. Blenski, Phys. Rev. A, **62**, 063204(2000).
- ¹⁷P. Scheier and T. D. Mark, J. Chem. Phys., 86, 3056(1987).
- ¹⁸M. Hoener, C. Bostedt, S. Schrob, H. Thomas, L, Foucar, O. Jagutzki, H. Schmidt-Bocking, R. Dorner and T. Moller, Phys. Rev. A, **78**, 021201(R)(2008).
- ¹⁹J. G. Gay and B. J. Berne, Phys. Rev. Lett., 49, 194(1982).
- ²⁰I. Last and J. Jortner, Phys. Rev. A, **75**, 042507(2007).

- ²¹A. Heidenreich, I. Last and J. Jortner, Phys. Chem. Chem. Phys., **11**, 111(2009).
- ²²A. Heidenreich, I. Last and J. Jortner, J. Chem. Phys. 127, 074305 (2007).
- ²³L. Poisson, K. D. Rahhael, M. A. Gaveau, B. Soep and J. M. Mestdagh, Phys. Rev. Lett., 99, 103401(2007).
- ²⁴A. Goldberg, I. Last and T. F. George, J. Chem. Phys., **100**, 8277(1994).
- ²⁵I. Last, Y. Levy and J. Jortner, J. Chem. Phys., **123**, 154301(2005).
- ²⁶I. Last, Y. Levy and J. Jortner, Proc. Natl. Acad. Sci. U.S.A., **99**, 9107(2002).
- ²⁷S. Nandy, P. Chaudhury and S. P. Bhattacharyya, J. Chem. Phys., **132**, 234104(2010).
- ²⁸S. Guha, S. Roy and P. Chaudhury, Struct. Chem., **22**, 1007(2011).
- ²⁹S. Talukder, S. Sen, S. G. Neogi and P. Chaudhury, J. Chem. Phys., **139**, 164312(2013).
- ³⁰S. K. Biring, R. Sharma and P. Chaudhury, J. Math. Chem., **52**, 368-397(2014).
- ³¹S. G. Neogi and P. Chaudhury, Indian J. Phys., 88, 781-793(2014).
- ³²S. G. Neogi and P. Chaudhury, Mol. Phys., **113**, 3729-3739(2015).
- ³³S. G. Neogi and P. Chaudhury, J. Comput. Chem., **35**, 51-61(2014).
- ³⁴N. G. Gotts, P. G. Lethbridge and A. J. Stace, J. Chem. Phys., **96**, 408(1992).
- ³⁵P. Scheier and T. D. Märk, J. Chem. Phys., 86, 3056(1987).
- ³⁶T. D. Märk, Int. J. Mass Spectrom. Ion Proc., **79**, 1(1987).
- ³⁷K. Sattler, J. Mühlbach, O. Echt, P. Pfau and E. Recknagel, Phys. Rev. Lett., 42, 160(1981).
- ³⁸K. Gluch, S. Matt-Leubner, L. Michalak, O. Echt, A. Stamatovic, P. Scheier and T. D. Märk, J. Chem. Phys., **120**, 2686(2004).
- ³⁹M. S. Daw and M. J. Baskes, Phys. Rev. B, **29**, 6443(1984).
- ⁴⁰S. M. Foiles, M. J. Baskes and M. S. Daw, Phys. Rev. B, **33**, 7983(1986).
- ⁴¹F. Ducastelle, J. Physique, **31**, 1055(1970).
- ⁴²R. P. Gupta, Phys. Rev. B, **23**, 6265(1985).
- ⁴³F. Cleri and V. Rosato, Phys. Rev. B, **48**, 22(1993).
- ⁴⁴A. P. Sutton and J. Chen, Phil. Mag. Lett., **61**, 139(1990).
- ⁴⁵J. N. Murrell and R. E. Mottram, Mol. Phys., **69**, 571(1990).
- ⁴⁶H. Cox, R. L. Johnston and J. N. Murrell, J. Solid State Chem., **145**, 571(1990).
- ⁴⁷F. Calvo, J. Phys. Chem. Lett., **1**, 2637-2641(2010).
- ⁴⁸I. Mähr, F. Zappa, S. Denifl, D. Kubala, O. Echt, T. D. Märk and P. Scheier, Phys. Rev. Lett., 98, 023401(2007).

- ⁴⁹O. Echt, D. Kreisle, E. Recknagel, J. J. Saenz, R. Casero and J. M. Soler, Phys. Rev. A, 38, 3236(1988).
- ⁵⁰R. Casero, J. J. Sáenz and J. M. Soler, Phys. Rev. A, **37**, 1401(1988).
- ⁵¹I. Last, Y. Levy and J. Jortner, Proc. Natl. Acad. Sci., **99**, 9107-9112(2002).
- ⁵²J. L. Llanio-Trujillo, J. M. C. Marques, F. B. Pereira, J. Phys. Chem. A, **115**, 2130-2138(2011).
- ⁵³J. M. C. Marques, J. L. Llanio-Trujillo, M. Albertí, A. Aguilar and F. Pirani, J. Phys. Chem. A, **117**, 8043-8053 (2013).
- ⁵⁴M. Bartolomei, F. Pirani, J. M. C. Marques, J. Comp. Chem., **36**, 2291-2301(2015).
- ⁵⁵J. M. C. Marques, J. L. Llanio-Trujillo, M. Albertí, A. Aguilar and F. Pirani J. Phys. Chem. A, **116**, 4947-4956(2012).
- ⁵⁶E. Martínez-Núñez, J. Comp. Chem., **36**, 222-234(2015).
- ⁵⁷E. Martínez-Núñez, Phys. Chem. Chem. Phys., **17**, 14912(2015).
- ⁵⁸L. P. Wang, R. T. McGibbon, V. S. Pande, T. J. Martinez, J. Chem. Theory Comput., 12, 638-649(2016).
- ⁵⁹F. Dupradeau, A. Pigache, T. Zaffran, C. Savineau, R. Lelong, N. Grivel, D. Lelong, W. Rosanski and P. Cieplak, Phys. Chem. Chem. Phys., **12**, 7821-7839(2010).
- ⁶⁰S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Science, **220**, 671-680(1983).
- ⁶¹S. Kirkpatrick, J. Stat. Phys., **34**, 975-986(1984).
- ⁶²S. K. Biring, R. Sharma, R. Misra and P. Chaudhury, J. Cluster Sci., 24, 715-737(2013).
- ⁶³S. Sen, S. Talukder and P. Chaudhury, Indian J. Phys., 87, 865-872(2013).
- ⁶⁴S. Talukder, S. Sen, R. Sharma, S. K. Banik and P. Chaudhury, Chem. Phys., 431, 5-14(2014).
- ⁶⁵S. K. Biring and P. Chaudhury, Chem. Phys., **400**, 198-206(2012).
- ⁶⁶S. Ghosh, S. Talukder, S. Sen and P. Chaudhury, Chem. Phys., **425**, 73-79(2013).
- ⁶⁷B. K. Shandilya, S. Sen, T. Sahoo, S. Talukder, P. Chaudhury and S. Adhikari, J. Chem. Phys., **139**, 034310(2013).
- ⁶⁸S. Talukder, S. Sen, B. K. Shandilya, R. Sharma, P. Chaudhury and S. Adhikari, J. Chem. Phys., **143**, 144109(2015).
- ⁶⁹H. Takeuchi, Comput. Theor. Chem., **1021**, 84-90(2013).
- ⁷⁰J.-B. Maillet, A. Boutin, S. Buttefey, F. Calvo, A. H. Fuchs, J. Chem. Phys., **109**, 329-337(1998).

- ⁷¹H. Takeuchi, J. Phys. Chem. A, **112**, 7492-7497(2008).
- ⁷²S. G. Neogi, S. Talukder and P. Chaudhury, Struct. Chem., **25**, 909-918(2014).
- ⁷³H. Liu and K. D. Jordan, J. Phys. Chem. A, **107**, 5703-5709(2003).
- ⁷⁴M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, **2010**.
- ⁷⁵N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth and A. H. Telier, J. Chem. Phys., 21, 1087(1953).
- ⁷⁶A. E. W. Jones, G. W. Forbes, J. Glob. Opt., 6, 1-37(1995).
- ⁷⁷N. Azizi, S. Zolfaghari, Comput. Oper. Res., **31**, 2439-2451(2004).
- ⁷⁸G. Dueck and T. Scheuer, J. Comput. Phys., **90**, 161-175(1990).
- ⁷⁹G. Schrimpf, J. Schneider, H. Stamm-Wilbrandt and G. Dueck, J. Comput. Phys., 159, 139-171(2000).
- ⁸⁰See ESI for all the figures, all the fragmentation patterns and all the values of energies.
 ⁸¹J. W. R. Morgan, D. Chakrabarti, N. Dorsaz and D. J. Wales, ACS Nano, 7, 1246(2013).
 ⁸²F. H. Stillinger, J. Chem. Phys., 71, 1647(1979).

FIGURES

FIG. 1. Flowchart of adaptive mutation simulated annealing (AMSA) technique.

(b)Zoomed in profile of a portion of Fig. 2(a)

(d) Zoomed in profile of a portion of Fig. 2(c)

(e)Variation of max. change in coordinates in AMSA

(f)Variation of max. change in Euler angles in AMSA

(g)Variation of Cost functional in SA

(h)Variation of energy in SA

FIG. 2. Critical analysis of AMSA for NOVER = 100.

(b)Zoomed in profile of a portion of Fig. 3(a)

(d) Zoomed in profile of a portion of Fig. $3({\rm c})$

(e)Variation of max. change in coordinates in AMSA

(f)Variation of max. change in Euler angles in AMSA

(g)Variation of Cost functional in SA

(h)Variation of energy in SA

FIG. 3. Critical analysis of AMSA for NOVER = 500.

(b)Zoomed in profile of a portion of Fig. 4(a)

(d) Zoomed in profile of a portion of Fig. 4(c)

(e)Variation of max. change in coordinates in AMSA

(f)Variation of max. change in Euler angles in AMSA

(g)Variation of Cost functional in SA

(h)Variation of energy in SA

FIG. 4. Critical analysis of AMSA for NOVER = 1000.

(b) Zoomed in profile of a portion of Fig. 5(a)

(d) Zoomed in profile of a portion of Fig. 5(c)

(e)Variation of max. change in coordinates in AMSA

(f)Variation of max. change in Euler angles in AMSA

(g)Variation of Cost functional in SA

(h)Variation of energy in SA

FIG. 5. Critical analysis of AMSA for NOVER = 1500.

(b)Zoomed in profile of a portion of Fig. 6(a)

(d) Zoomed in profile of a portion of Fig. $6({\rm c})$

(e)Variation of max. change in coordinates in AMSA

(f)Variation of max. change in Euler angles in AMSA

(g)Variation of Cost functional in SA

(h)Variation of energy in SA

FIG. 6. Critical analysis of AMSA for NOVER = 2000.

(b)Zoomed in profile of a portion of Fig. 7(a)

(d) Zoomed in profile of a portion of Fig. 7(c) $\,$

(e)Variation of max. change in coordinates in AMSA

(f)Variation of max. change in Euler angles in AMSA

(g)Variation of Cost functional in SA

(h)Variation of energy in SA

FIG. 7. Critical analysis of AMSA for NOVER = 5000.

(b)Zoomed in profile of a portion of Fig. 8(a)

(d) Zoomed in profile of a portion of Fig. $8({\rm c})$

(e)Variation of max. change in coordinates in AMSA

(f)Variation of max. change in Euler angles in AMSA

(g)Variation of Cost functional in SA

(h)Variation of energy in SA

FIG. 8. Critical analysis of AMSA for NOVER = 7000.

(b) Zoomed in profile of a portion of Fig. 9(a)

(d) Zoomed in profile of a portion of Fig. $9({\rm c})$

(e)Variation of max. change in coordinates in AMSA

(f)Variation of max. change in Euler angles in AMSA

(g)Variation of Cost functional in SA

(h)Variation of energy in SA

FIG. 9. Critical analysis of AMSA for NOVER = 10000.

(b)Zoomed in profile of Fig. 10(a)

(c)Variation of energy in AMSA

(d) Zoomed in profile of a portion of Fig. $10(\mathrm{c})$

(e)Variation of max. change in coordinates in AMSA

(f)Variation of max. change in Euler angles in AMSA

(g)Variation of Cost functional in SA

(h)Variation of energy in SA

FIG. 10. Critical analysis of AMSA for NOVER = 2000.

(b)Zoomed in profile of a portion of Fig. 11(a)

(d) Zoomed in profile of a portion of Fig. $11(\mathrm{c})$

(e)Variation of max. change in coordinates in AMSA

(f)Variation of max. change in Euler angles in AMSA

(g)Variation of Cost functional in SA

(h)Variation of energy in SA

FIG. 11. Critical analysis of AMSA for NOVER = 5000.

(b)Zoomed in profile of a portion of Fig. 12(a)

(c)Variation of energy in AMSA

(d)Zoomed in profile of a portion of Fig. 12(c)

(e)Variation of max. change in coordinates in AMSA

(f)Variation of max. change in Euler angles in AMSA

(g)Variation of Cost functional in SA

(h)Variation of energy in SA

FIG. 12. Critical analysis of AMSA for NOVER = 5000.

(c)

FIG. 13. Variation of temperature in AMSA.

FIG. 14. Structures and fragment patterns for n = 20.

FIG. 15. Structures and fragment patterns for n = 21.

FIG. 16. Structures and fragment patterns for n = 22.

FIG. 17. Structures and fragment patterns for n = 23.

FIG. 18. Structures and fragment patterns for n = 24.

FIG. 19. Structures and fragment patterns for n = 25.

FIG. 20. Structures and fragment patterns for n = 26.

FIG. 21. Structures and fragment patterns for n = 27.

FIG. 22. Structures and fragment patterns for n = 28.

FIG. 23. Structures and fragment patterns for n = 29.

FIG. 24. Structures and fragment patterns for n = 30.

FIG. 25. Structures and fragment patterns for n = 31.

FIG. 26. Structures and fragment patterns for n = 32.

FIG. 27. Structures and fragment patterns for n = 33.

FIG. 28. Structures and fragment patterns for n = 34.

FIG. 29. Structures and fragment patterns for n = 35.

FIG. 30. Structures and fragment patterns for n = 36.

FIG. 31. Structures and fragment patterns for n = 37.

FIG. 32. Structures and fragment patterns for n = 38.

FIG. 33. Structures and fragment patterns for n = 39.

FIG. 34. Structures and fragment patterns for n = 40.

FIG. 35. Structures and fragment patterns for n = 41.

FIG. 36. Structures and fragment patterns for n = 42.

FIG. 37. Structures and fragment patterns for n = 43.

FIG. 38. Structures and fragment patterns for n = 44.

FIG. 39. Structures and fragment patterns for n = 45.

FIG. 40. Structures and fragment patterns for n = 46.

FIG. 41. Structures and fragment patterns for n = 47.

FIG. 42. Structures and fragment patterns for n = 48.

FIG. 43. Structures and fragment patterns for n = 49.

FIG. 44. Structures and fragment patterns for n = 50.

FIG. 45. Structures and fragment patterns for n = 51.

FIG. 46. Structures and fragment patterns for n = 52.

FIG. 47. Structures and fragment patterns for n = 53.

FIG. 48. Structures and fragment patterns for n = 54.

FIG. 49. Structures and fragment patterns for n = 55.

FIG. 50. Structures and fragment patterns for n = 56.

FIG. 51. Structures and fragment patterns for n = 57.

FIG. 52. Structures and fragment patterns for n = 58.

FIG. 53. Structures and fragment patterns for n = 59.

FIG. 54. Structures and fragment patterns for n = 60.

FIG. 55. Structures and fragment patterns for n = 61.

FIG. 56. Structures and fragment patterns for n = 62.

FIG. 57. Structures and fragment patterns for n = 63.

FIG. 58. Structures and fragment patterns for n = 64.

FIG. 59. Structures and fragment patterns for n = 65.

FIG. 60. Structures and fragment patterns for n = 66.

FIG. 61. Structures and fragment patterns for n = 67.

FIG. 62. Structures and fragment patterns for n = 68.

TABLES

Interaction	σ	ϵ
type	[Å]	$[kJ.mol^{-1}]$
C - C	2.82400	0.21867
C - O	2.92500	0.36999
O - O	3.02600	0.62524

TABLE I. Parameters used in empirical potential energy function for E_{LJ} part.

Site	$Z[\text{\AA}]$	Q(e)
1	-1.5232	0.1216
2	-1.0663	-0.6418
3(C)	0.0	1.0404
4	1.0663	-0.6418
5	1.5232	0.1216

TABLE II. Parameters used for neutral CO_2 molecule in empirical potential energy function for E_{Coul} part.

	For CO_2 molecule	For CO_2^+ molecule
Atom	Charge (Mulliken)	Charge (Mulliken)
at	DFT(B3LYP)/6-311++G(3df,3pd)	level
Ο	-0.515	-0.100
С	+1.030	+1.200
0	-0.515	-0.100
at	$\mathrm{DFT}(\omega\mathrm{B97xD})/6\text{-}311\text{++}\mathrm{G}(3\mathrm{df},\!3\mathrm{pd})$	level
0	-0.524	-0.153
С	+1.048	+1.306
0	-0.524	-0.153
at	DFT(MPW1PW91)/6-311++G(3df,3pd)	level
0	-0.573	-0.144
С	+1.146	+1.288
Ο	-0.573	-0.144
at	MP2/6-311++G(3df,3pd)	level
0	-0.640	-0.193
С	+1.280	+1.386
0	-0.640	-0.193

TABLE III. Charges found from Quantum Chemical Calculations at different levels.

TABLE IV. Parameters used for two $(CO_2)^+$ molecules in empirical potential energy function for E_{Coul} part.

Site	$Z[\text{\AA}]$	Q(e)
1	-1.5232	0.1216 + 0.25
2	-1.0663	-0.6418
3(C)	0.0	1.0404 + 0.50
4	1.0663	-0.6418
5	1.5232	0.1216 + 0.25

Number of coordinates to be optimized	:	3 \times Total no. of molecule
Number of Euler angles to be optimized	:	3 \times Total no. of molecule
Initial AMSA/SA temperature	:	0.150
Cooling schedule after i^{th} step	:	$T_{i+1} = T_i \times 0.90$
Reheating schedule	:	70 steps
Reheating rate	:	$T_{new}^{initial} = T_{current}^{initial} \times 0.9990$
Number of Metropolis sampling at a particular T	:	$NOVER \times (3 \times \text{Total no. of molecule})$
$r_{mut}^{min}, r_{mut}^{max}$ in AMSA	:	0.10,0.25
Initial mutation step for changing coordinates in AMSA	:	0.5
Initial mutation step for changing Euler angles in AMSA	:	40.0

TABLE V. Parameters used in AMSA/SA.

Step	$Temp. \times 10^4$	$< Cost >_{global best}$	$< Cost >_{local best}$
70	1.04430	0.48343	0.48587
140	1.04325	0.47093	0.47525
210	1.04221	0.47093	1.20017
280	1.04117	0.47093	1.36721
350	1.04103	0.38036	0.39006
420	1.03909	0.38036	0.48551
490	1.03805	0.38036	1.01619
560	1.03701	0.38036	0.91902
630	1.03597	0.38036	0.59553
700	1.03494	0.38036	1.33089
770	1.03390	0.38036	0.64341
840	1.03287	0.38036	1.46443
910	1.03184	0.38036	0.78841
980	1.03080	0.38036	0.72207
1050	1.02977	0.38036	0.60360
1120	1.02874	0.38036	1.11512
1190	1.02771	0.38036	0.69058

TABLE VI. Cost values at different points of simulation for NOVER = 100 in AMSA (< Cost >s are given in $(kJ/mol)^2$).
Step $Temp. \times 10^4 < Cost >_{global \ best} < Cost >_{local \ best}$						
70	1.04430	0.38521	0.44768			
140	1.04325	0.38457	0.79743			
210	1.04221	0.38457	0.49375			
280	1.04117	0.38457	0.42578			
350	1.04103	0.20514	0.21315			
420	1.03909	0.20514	0.60731			
490	1.03805	0.20514	0.38778			
560	1.03701	0.20514	0.53704			
630	1.03597	0.20514	0.40173			
700	1.03494	0.20514	0.32664			
770	1.03390	0.20514	0.41538			
840	1.03287	0.20514	0.41020			
910	1.03184	0.20514	0.42931			
980	1.03080	0.20514	0.45582			
1050	1.02977	0.20514	0.49306			
1120	1.02874	0.20514	0.52262			
1190	1.02771	0.20514	0.32870			

TABLE VII. Cost values at different points of simulation for NOVER = 500 in AMSA (< Cost >s are given in $(kJ/mol)^2$).

Step	$Temp. \times 10^4$	$< Cost >_{global best}$	$< Cost >_{local best}$
70	1.04430	0.30858	0.31167
140	1.04325	0.30858	0.53878
210	1.04221	0.30858	0.36518
280	1.04117	0.30858	0.32088
350	1.04013	0.30858	0.33312
420	1.03909	0.30858	0.37217
490	1.03805	0.30858	0.36169
560	1.03701	0.15792	0.16224
630	1.03597	0.15792	0.53366
700	1.03494	0.15792	0.55790
770	1.03390	0.15792	0.41420
840	1.03287	0.15792	0.80074
910	1.03184	0.15792	0.23296
980	1.03080	0.15792	0.49966
1050	1.02977	0.15792	0.18210
1120	1.02874	0.15792	0.46452
1190	1.02771	0.15792	0.79198

TABLE VIII. Cost values at different points of simulation for NOVER = 1000 in AMSA (< Cost > s are given in $(kJ/mol)^2$).

Step Temp. $\times 10^4 < Cost >_{global best} < Cost >_{local best}$					
70	1.04430	0.35094	0.35510		
140	1.04325	0.35094	0.38086		
210	1.04221	0.22788	0.23500		
280	1.04117	0.16496	0.16954		
350	1.04103	0.10367	0.10904		
420	1.03909	0.10367	0.46486		
490	1.03805	0.08623	0.09167		
560	1.03701	0.08623	0.10531		
630	1.03597	0.08623	0.46806		
700	1.03494	0.08623	0.22454		
770	1.03390	0.08623	0.37146		
840	1.03287	0.08623	0.16550		
910	1.03184	0.08623	0.26846		
980	1.03080	0.08623	0.20649		
1050	1.02977	0.08623	0.33046		
1120	1.02874	0.08623	0.24377		
1190	1.02771	0.08623	0.36384		

TABLE IX. Cost values at different points of simulation for NOVER = 1500 in AMSA (< Cost >s are given in $(kJ/mol)^2$).

Step Temp. $\times 10^4 < Cost >_{global best} < Cost >_{local best}$						
70	1.04430	0.22908	0.23306			
140	1.04325	0.22908	0.48207			
210	1.04221	0.22908	0.49227			
280	1.04117	0.22908	0.26172			
350	1.04013	0.16942	0.17316			
420	1.03909	0.16942	0.22353			
490	1.03805	0.13765	0.14278			
560	1.03701	0.13765	0.34043			
630	1.03597	0.13765	0.34300			
700	1.03494	0.13765	0.24835			
770	1.03390	0.13765	0.47998			
840	1.03287	0.10403	0.10841			
910	1.03184	0.10403	0.26535			
980	1.03080	0.10403	0.41504			
1050	1.02977	0.10403	0.38843			
1120	1.02874	0.10403	0.19457			
1190	1.02771	0.10403	0.13594			

TABLE X. Cost values at different points of simulation for NOVER = 2000 in AMSA (< Cost >s are given in $(kJ/mol)^2$).

Step Temp. $\times 10^4 < Cost >_{global best} < Cost >_{local best}$						
70	1.04430	0.18793	0.19154			
140	1.04325	0.08839	0.09199			
210	1.04221	0.07763	0.08087			
280	1.04117	0.07763	0.37537			
350	1.04013	0.07763	0.15777			
420	1.03909	0.07763	0.20982			
490	1.03805	0.07385	0.07845			
560	1.03701	0.07385	0.22313			
630	1.03597	0.07385	0.15449			
700	1.03494	0.07163	0.07742			
770	1.03390	0.03877	0.04789			
840	1.03287	0.00512	0.00849			
910	1.03184	0.00512	0.35362			
980	1.03080	0.00512	0.09466			
1050	1.02977	0.00512	0.08018			
1120	1.02874	0.00512	0.14387			
1190	1.02771	0.00512	0.09009			

TABLE XI. Cost values at different points of simulation for NOVER = 5000 in AMSA (< Cost >s are given in $(kJ/mol)^2$).

Step $Temp. \times 10^4 < Cost >_{global best} < Cost >_{local best}$					
70	1.04430	0.08737	0.09117		
140	1.04325	0.08737	0.17828		
210	1.04221	0.08737	0.12161		
280	1.04117	0.08737	0.18650		
350	1.04013	0.00685	0.01057		
420	1.03909	0.00685	0.14763		
490	1.03805	0.00685	0.39916		
560	1.03701	0.00685	0.32401		
630	1.03597	0.00685	0.14981		
700	1.03494	0.00685	0.15880		
770	1.03390	0.00685	0.19332		
840	1.03287	0.00685	0.34095		
910	1.03184	0.00685	0.04590		
980	1.03080	0.00685	0.08342		
1050	1.02977	0.00685	0.18409		
1120	1.02874	0.00685	0.08923		
1190	1.02771	0.00685	0.09656		

TABLE XII. Cost values at different points of simulation for NOVER = 7000 in AMSA (< Cost > s are given in $(kJ/mol)^2$).

Step	$Temp. \times 10^4$	$< Cost >_{global best}$	$< Cost >_{local best}$
70	1.04430	0.00324	0.00710
140	1.04325	0.00324	0.27407
210	1.04221	0.00324	0.09972
280	1.04117	0.00324	0.21870
350	1.04013	0.00324	0.39814
420	1.03909	0.00324	0.34161
490	1.03805	0.00324	0.20581
560	1.03701	0.00324	0.07954
630	1.03597	0.00324	0.03212
700	1.03494	0.00324	0.14591
770	1.03390	0.00324	0.08494
840	1.03287	0.00324	0.02016
910	1.03184	0.00324	0.11874
980	1.03080	0.00324	0.39141
1050	1.02977	0.00324	0.15989
1120	1.02874	0.00324	0.10287
1190	1.02771	0.00324	0.40275

TABLE XIII. Cost values at different points of simulation for NOVER = 10000 in AMSA (< Cost > s are given in $(kJ/mol)^2$).

TABLE XIV. Critical analysis of results obtained by AMSA/SA for n = 43 [energies are given in kJ/mol and $\langle Cost \rangle$ s are given in $(kJ/mol)^2$].

Fi	g.	Total no.		Metropolis Test	$< Cost >_{best}$	$-E_{best}$	AMSA steps required	$< Cost >_{best}$	$-E_{best}$	SA steps required
N	0.	AMSA/SA	NOVER	at a particular T	in	in	to reach	in	in	to reach
		steps		$[= NOVER \times (3 \times n)]$	AMSA	AMSA	best solution	SA	SA	best solution
2(a) &	z 2(g)	1200	100	12900	0.38036	-714.23296	350	0.75639	-665.72532	1190
3(a) &	$z \ 3(g)$	1200	500	64500	0.20514	-736.83633	350	0.43929	-706.63083	1188
4(a) &	z 4(g)	1200	1000	129000	0.15792	-742.92883	560	0.31487	-722.68150	1190
<u></u> =5(a) &	z 5(g)	1200	1500	193500	0.08623	-752.17536	490	0.30244	-724.28416	1190
ි 6(a) &	z 6(g)	1200	2000	258000	0.10403	-749.87992	840	0.16873	-741.53293	1186
7(a) &	z 7(g)	1200	5000	645000	0.00512	-767.45524	840	0.30992	-723.31925	1178
8(a) &	z 8(g)	1200	7000	903000	0.00685	-768.11578	350	0.00617	-755.33615	1191
9(a) &	z 9(g)	1200	10000	1290000	0.00324	- 768.58213	70	0.26766	-728.77170	1186
10(a) &	z 10(g)	5000	2000	258000	0.00765	-758.23877	3710	0.24731	-731.39627	4898
11(a) &	z 11(g)	3300	5000	645000	0.00346	-764.52849	140	0.00617	-747.89913	3281
12(a) &	z 12(g)	5000	5000	645000	0.00555	-768.28380	4970	0.11870	-747.98752	4967

Size (n)	Splitted	One Unit	d	Size (n)	Splitted	One Unit	d
20	-324.72022	-291.15004	33.57018	45	-789.34037	-801.67536	-12.33499
21	-344.45872	-311.69767	32.76105	46	-811.10347	-825.11902	-14.01555
22	-364.35030	-331.86870	32.48160	47	-822.70783	-846.94397	-24.23614
23	-381.15093	-353.86007	27.29086	48	-848.45750	-867.90360	-19.44610
24	-398.04086	-374.87096	23.16990	49	-869.87163	-893.32635	-23.45472
25	-416.83526	-393.72001	23.11526	50	-875.85333	-892.37570	-16.52237
26	-436.43333	-412.37624	24.05709	51	-902.95821	-931.42583	-28.46763
27	-458.18277	-435.86701	22.31576	52	-922.14885	-934.12258	-11.97373
28	-478.59370	-458.04241	20.55129	53	-938.67257	-965.59451	-26.92194
29	-493.65937	-475.18916	18.47021	54	-959.22965	-986.26647	-27.03682
30	-513.86536	-495.86286	18.00250	55	-969.52434	-1006.64882	-37.12447
31	-543.98609	-525.54570	18.44039	56	-990.24262	-1023.10364	-32.86102
32	-561.72678	-544.46912	17.25766	57	-1022.26563	-1037.21522	-14.94960
33	-577.54272	-567.88860	9.65412	58	-1032.29014	-1067.54698	-35.25684
34	-595.58925	-590.68753	4.90173	59	-1059.03064	-1088.45552	-29.42488
35	-638.57571	-612.14943	26.42628	60	-1062.31488	-1085.14397	-22.82908
36	-657.57400	-627.76141	29.81259	61	-1082.53898	-1131.84671	-49.30773
37	-664.06611	-651.10942	12.95669	62	-1103.97396	-1137.92098	-33.94701
38	-685.28561	-669.58689	15.69872	63	-1118.67696	-1175.65553	-56.97857
39	-710.89499	-685.03391	25.86108	64	-1139.88057	-1182.01649	-42.13592
40	-721.93235	-710.82903	11.10331	65	-1149.01797	-1210.93152	-61.91354
41	-742.64792	-729.77556	12.87236	66	-1183.97190	-1209.16986	-25.19796
42	-744.16362	-734.90150	9.26212	67	-1193.97032	-1250.96555	-56.99523
43	-753.85723	-768.58213	-14.72490	68	-1222.53142	-1251.87295	-29.34153
44	-772.08320	-782.3079	-10.22476				

TABLE XV. Energies for all sizes in $(KJ/mol)[d = E_{One \ Unit} - E_{Splitted}]$