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S1 Linear Spin Vibronic Model Hamiltonian

The Hamiltonian used in the present work is based upon a Linear spin-vibronic coupling Hamiltonian described
in ref. [1,2]. Briefly, it has the general form:
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where Qi is the nuclear degree of freedom and Erel is the excited state energy, relative to the 3LE state. This
means that Erel

3LE will be 0, while for Erel
3CT and Erel

1CT , the energy represents the gap between this state and the
3LE state. The expansion coefficients used are shown in Table S1

Parameter
ω1 13.60
ω11 173.65
ω23 422.60

Erel
3LE (eV) 0.00

Erel
3CT (eV) 0.07 (0.03)

Erel
1CT (eV) 0.10 (0.06)
ESOC 2.00
EHFI 0.20
λ1 67.02 (134.04)
λ11 91.71 (183.42)
λ23 79.04 (158.08)

Table S1: Hamiltonian parameters for each ρMCTDH simulation. All energies are in cm−1 unless stated other-
wise. In brackets are values that are altered as described in the manuscript.

S2 Quantum Dynamics Simulations

We perform simulations within a density operator formalism of MCTDH [3]. Here the single particle functions are
replaced with single-particle density operators. Here we adopt a closed quantum system, this is to say that no
dissipative operators are included and only the core Hamiltonian described above is used. In this representation
the Liouville-von Neumann equation for the system is expressed:

ρ̇(t) = − i

~
[H, ρ(t)] (S2)
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Although the model Hamiltonian used herein is relatively small, for the density operator simulations the dimen-
sionality of the system formally doubles [4] significantly increasing the numerical treatment of the simulations.
The full details of the details of the MCTDH simulations are given in Table S2 and ensure convergence for the
population kinetics for the entire simulations of 250 ps.

Table S2: Computational details for the MCTDH simulations within both the wavefunction and density operator
formalisms. Ni is the number of primitive harmonic oscillator discrete variable representation (DVR) basis func-
tions used to describe each mode. ni are the number of single-particle functions used to describe the wavepacket
on each state.

Modes Ni nS1 ,nT1 ,nT2

Density Operator ν1,ν11 21 21,61,41
ν23 21 12,12,12

The dynamics were performed using the model Hamiltonian described above. The computational details for
the quantum dynamics simulations are shown in Table S1 and ensured convergence of the population kinetics
shown in the main text.
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