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S1 Dependence of Hill function on external signal
The derivation is analogous as in [1], but for the sake of clarity we present it here in more detail.
First, we will consider the simplest case of a single TF binding site on the operator (n = 1).
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We assume that R = Ra + Ri is the sum of active and inactive TFs. kaon, kaoff are the rates of
binding and unbinding of the active TF to the operator. kion, kioff are the rates of binding and
unbinding of the inactive TF. Then, the regulation part of the transfer function reads:

H(R) =
1

1 + kaon
kaoff

Ra + kion
kioff

Ri

(S1)

=
1

1 +R
[
kaon
kaoff

fa + kion
kioff

(1− fa)
] .

Under the assumption of negligible binding of inactive TFs,

H(R) =
1

1 +R
[
kaon
kaoff

fa

] =
1

1 +R/K
. (S2)

In the case of cooperative binding of TFs to 2 binding sites (n = 2), we have:

H(R) =

[
1 +

kaon,1
kaoff,1

kaon,2
kaoff,2

R2
a +

kion,1
kioff,1

kion,2
kioff,2

R2
i (S3)

+

(
kion,1
kioff,1

k̃aon,2

k̃aoff,2
+
kaon,1
kaoff,1

k̃ion,2

k̃ioff,2

)
RiRa

+
kaon,1
kaoff,1

Ra +
kion,1
kioff,1

Ri

]−1
Here, we simplistically assume that each of the two binding sites on the operator has the same
affinity to TF unless the other binding site is already occupied. Therefore, in our notation,
the subscript “1” denotes binding/unbinding of TF to the free operator and the subscript “2”
denotes binding of TF to the already occupied operator. We also broadly assume that there
may be a difference in the binding/unbinding rates depending on whether the other binding
site is occupied by an active or inactive TF (see Table S1). Thus, the term kion,1

kioff,1

k̃aon,2

k̃aoff,2
describes

the reaction Ra +RiO −−⇀↽−− RaRiO, where O is the operator. The term kaon,1
kaoff,1

k̃ion,2

k̃ioff,2
describes the

reaction Ri + RaO −−⇀↽−− RaRiO.
Assuming strong cooperativity of Ra binding and weak binding of Ri even in the presence of
Ra already bound, we obtain

H(R) =
1

1 +R2
[
kaon,1
kaoff,1

kaon,2
kaoff,2

f 2
a

] =
1

1 + (R/K)2
, (S4)

and the derivation is analogous for other values of n.
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TF binding/unbinding to the free operator

Active TF Ra + O
kaon,1−−−−⇀↽−−−−−
kaoff,1

RaO

Inactive TF Ri + O
kion,1−−−−⇀↽−−−−−
kioff,1

RiO

TF binding/unbinding to the already occupied operator

Active TF Ra + RaO
kaon,2−−−−⇀↽−−−−−
kaoff,2

Ra
2O

Active TF Ra + RiO
k̃aon,2−−−−⇀↽−−−−−
k̃aoff,2

RaRiO

Inactive TF Ri + RiO
kion,2−−−−⇀↽−−−−−
kioff,2

Ri
2O

Inactive TF Ri + RaO
k̃ion,2−−−−⇀↽−−−−−
k̃ioff,2

RaRiO

Table S1: Reactions of TF binding/unbinding to the operator assumed for derivation of our model, here for
n = 2. For the sake of clarity, the reactions also include inactive TFs. Further on, we will assume that binding
of inactive TFs is negligible (kion,1 = kion,2 = k̃ion,2 = 0), see Table S2.

The assumptions of strong cooperativity and negligible binding of inactive TFs allows us to
define K by

K−1 =

(
kaon,1...k

a
on,n

kaoff,1...k
a
off,n

)1/n

fa, (S5)

where the term in parentheses is the ratio of the on-rate and off-rate constants of (active) TF
binding to the n sites on the operator, and fa is the fraction of active TFs. And thus, for
simplicity, we will use K as a measure of the strength of the signal that activates or deactivates
the TFs (e.g., dependent on the concentration of effector molecules or TF phosphorylation),
analogously as in [1]. We assume that the concentration of signal molecules is much greater
than TF concentration – that is, the number of free signal molecules is well approximated by
the total number of signal molecules, so that a given signal level makes a fraction fa of TFs
active independent of the TF level in the cell.

Gene 1 is autoregulated and TF binding to its operator is described by Hill kinetics with
the transfer function h1(R), with the signal parameter K1, cooperativity n, and leakage ε1 =
kml1/km1:

h1(R) = H1(R)(1− ε1) + ε1, where H1(R) =
1

1 + (R/K1)
n (S6)

Gene 2 encoding for the target protein P is also regulated by the transcription factor R, whose
binding to the operator of that gene is described by Hill kinetics with the transfer function
h2(R) with the corresponding parameters K2, m, and ε2 = kml2/km2:

h2(R) = H2(R)(1− ε2) + ε2, where H2(R) =
1

1 + (R/K2)
m . (S7)
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Activation/deactivation of TF

Ri k+−−⇀↽−−
k−

Ra

TF binding/unbinding

to the operator of Gene 1 Ra + Or
kron,1−−−−⇀↽−−−−−
kroff,1

RaOr

Ra + RaOr
kron,2−−−−⇀↽−−−−−
kroff,2

Ra
2Or

to the operator of Gene 2 Ra + Ot
kton,1−−−−⇀↽−−−−−
ktoff,1

RaOt

Ra + RaOt
kton,2−−−−⇀↽−−−−−
ktoff,2

Ra
2Ot

Transcription

from Gene 1, leakage Or kml1−−−→ Or + Mr

autoactivated RaOr km1−−−→ RaOr + Mr

Ra
2Or km1−−−→ Ra

2Or + Mr

In the case of activation of Gene 2

from Gene 2, leakage Ot kml2−−−→ Ot + Mt

activated RaOt km2−−−→ RaOt + Mt

Ra
2Ot km2−−−→ Ra

2Ot + Mt

In the case of repression of Gene 2

from Gene 2, unrepressed transcription Ot km2−−−→ Ot + Mt

leakage RaOt kml2−−−→ RaOt + Mt

Ra
2Ot kml2−−−→ Ra

2Ot + Mt

Translation

from Gene 1 Mr kp1−−→ Mr + Ri

from Gene 2 Mt kp2−−→ Mt + P
Degradation

Mr kdm1−−−−→ ∅
Mt kdm2−−−−→ ∅

Ri kdp1−−−→ ∅

Ra kdp1−−−→ ∅

P
kdp2−−−→ ∅

Table S2: Reactions assumed in our simulations. Note that binding of inactive TFs is assumed to be negligible
(cf. Table S1).

the parameters in the Hill functions, K1 for the Gene 1, and K2 for the Gene 2, are both
inversely proportional to the signal-dependent fraction of active TFs (Eq. S5), under the
assumptions of our model, i.e. strong cooperativity and negligible binding of inactive TFs. K1

is therefore proportional to K2 at any signal level, so the signal strength can be measured by
any of these parameters.

S2 Intrinsic noise of the target gene
The distribution of target proteins numbers in cell population is the superposition of the dis-
tribution of the transcription rates q(h2) and the intrinsic noise g(P ; km2h2) corresponding to
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a given transcription rate:

p2(P ) =

∫ 1

ε2

q(h2)g(P ; km2h2)dh2. (S8)

Under the assumption that target mRNA degrades faster than target proteins [2], g can be a
negative binomial distribution, as used in [3], or a gamma distribution as its continuous limit
[4, 5]:

g(P, km2h2) = γ(P ; ah2, b) =
1

bah2Γ(ah2)
P ah2−1 exp

(
−P
b

)
, (S9)

where a = km2/kdp2 is the mean frequency of bursts at fully active promoter (h2 = 1) and
b = kp2/kdm2 is the mean burst size.

For g(P ; km2h2) being a gamma distribution, it can be shown [3] that noise measured by the
square of coefficient of variation, ηP = σ2

P/〈P 〉2 (σ2
P being the variance of the protein number

distribution), is an additive quantity containing the contribution from the intrinsic noise as well
as from the regulatory noise, for any mixing function q(h2),

ηP = ηreg + ηint =
σ2
h2

〈h2〉2
+

1

a〈h2〉
, (S10)

where σ2
h2

is the variance of q(h2). Intrinsic noise of the target gene decreases as a increases,
and for large a the distribution of target protein numbers p2(P ) can be approximated by the
rescaled function 1

ab
q
(
P
ab

)
[3].

The method presented in this paper is, therefore, valid when the intrinsic noise of the target
gene, quantified by 1/a, is sufficiently small, such that the transcription rate distribution itself
gives a significant information about the shape of the target gene expression.

S3 Extrema of the transcription rate distribution

S3.1 2-gene cascade in which the upstream gene is not regulated

The derivation has been described in detail in ref. [3] (SI therein), but, for the sake of clarity,
we briefly remind it here, with the modification that the transfer function contains the term
responsible for transcriptional leakage. A non-regulated Gene 1 produces TFs whose levels in
cell population are gamma-distributed,

p0(R) = γ(R;α, β) =
1

βαΓ(α)
Rα−1 exp

(
−R
β

)
, (S11)

with α = km1/kdp1 and β = kp1/kdm1. The input distribution p0(R) transferred through the
nonlinear filter h2(R) produces an output distribution of transcription rates of the Gene 2 given
by the relation

q0(h2) = p0(R(h2))

∣∣∣∣dR(h2)

dh2

∣∣∣∣ , (S12)
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where R(h2) is the inverse function of h2(R),

R(h2) = K2

(
h2 − 1

ε2 − h2

) 1
m

. (S13)

Thus, according to the relation (S12), the distribution of transcription rates of the target gene
reads

q0(h2;α, β,K2) =
1

|m|
Kα

2 (1− ε2)
βαΓ(α)(1− h2)(h2 − ε2)

(
1− h2
h2 − ε2

)α/m
exp

[
−
(

1− h2
h2 − ε2

)1/m
K2

β

]
.

(S14)
The formula is almost the same as in [3] except that the transfer function h2(R) contains the
leakage term ε2.

S3.2 2-gene cascade in which the upstream gene is self-regulated

When the Gene 1 is self-regulated, the TF number distribution is given by [1]

p1(R;α, β) = ARα−1 exp

(
−R
β

)
H1(R)α(1−ε1)/n, (S15)

where α and β are defined as above, and ε1 = kml1/km is the leakage of the Gene 1. A is a
normalization constant, whose explicit form was, to the best of our knowledge, not known to
date. We have found that for a given n it can be presented using standard special functions.
In Section S5, we have shown example formulas for A, for n = ±1,±2. The distribution of
transcription rates q(h2) obtained from the relation (S12) with the input distribution p1(R;α, β)
is the following:

q(h2) =
A

|m|
K2

α (1− ε2) e
−K2

β

(
1−h2
h2−ε2

) 1
m

(1− h2) (h2 − ε2)

(
1− h2
h2 − ε2

) α
m

(
1 +

(
1− h2
h2 − ε2

) n
m
(
K2

K1

)n)−α (1−ε1)
n

.

(S16)
However, the explicit knowledge of that formula is not needed if we just want to know the
number and positions of its minima and maxima. We note that (S15) belongs to the same class
as the gamma distribution (S11), such that

dp1(R)

dR
= p1(R)F (R), (S17)

where F (R) = α−1
R
− 1

β
for a non-regulated gene, and F (R) = αh1(R)−1

R
− 1

β
for an autoregulated

gene. This property allows us to derive the analogous geometric construction as in [3]. We
search for the extrema of the transcription rate distribution q(h2):

d

dh2
q (h2) = 0. (S18)
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Because
dp1(R)

dR
= p1(R)

[
αh1(R)− 1

R
− 1

β

]
, (S19)

the Eq. (S18) reads:

p1(R)

[(
αh1(R)− 1

R
− 1

β

)(
dR(h2)

dh2

)2

+
d2R(h2)

dh22

]
= 0. (S20)

We note that for α < 1, p1(R) = 0 when R = ∞. For α < 1, p1(R) = 0 when R = 0 and
R =∞. We need to calculate the conditions for the term in the square bracket to be equal to
zero: (

αh1(R)− 1

R
− 1

β

)(
dR(h2)

dh2

)2

+
d2R(h2)

dh22
= 0. (S21)

It turns out that (
dR(h2)

dh2

)2

=
1

R(h2)2
f1 (S22)

and
d2R(h2)

dh22
=

1

R(h2)3
f2, (S23)

where

f1 =

(
h2 − 1

ε2 − h2

) 4
m K2

4 (ε2 − 1)2

(ε2 − h2)2m2 (h2 − 1)2
(S24)

and
f2 = f1

m− 2h2m+ 1 + (m− 1)ε2
1− ε2

. (S25)

Substituting (S22), (S23), and (S24) into (S21), we obtain a relation that can be transformed
by rearrangement of terms into the form:

h2(R) =

[
− 1

2βm
R +

αh1(R)

2m
+

1

2

]
(1− ε2) + ε2 (S26)

The points of intersection of the transfer function h2(R) and the curve given by the right-hand
side of the equation (S26), projected onto the vertical axis, define the positions of the minima
and maxima of q(h2). If the number of intersections is even, then one more maximum is at
h2 = ε2 for positively regulated Gene 2 or at h2 = 1 for negatively regulated Gene 2. Since
the terms with ε2 cancel out on both sides of Eq. S26, the construction can be presented in a
simpler way as a Hill function intersecting a rescaled curve:

H2(R) = − 1

2βm
R +

αh1(R)

2m
+

1

2
≡ L(R). (S27)
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S4 Extrema of the TF number distribution
From [1] we know that the minima and maxima of the protein number distribution p1(R)
produced by the autoregulated Gene 1 are also given by a geometric construction, which
shows that bimodal distribution of TF numbers is possible only for a positively autoregulated
Gene 1 [1]. Note that the positions of the maxima and minima are in this case projected onto
the horizontal axis R:

h1(R) =
1

αβ
R +

1

α
(S28)

(Additionally, if for R > 0 there are two intersections of h1(R) and the straight line on the
right-hand side of Eq. (S28), then one more maximum is at R = 0.) After multiplication of
both sides of Eq. (S28) by α/(2m), addition of 1/2 to both sides and rearrangement of terms,
the rescaled equation can be presented in a graphical form on the same plot as the geometric
construction (S27) for the downstream gene and it takes the form:

m+ 1

2m
= L(R), (S29)

where the curve L(R) is given by Eq. (S27). The number of the extrema of p1(R) is given
by the number of intersections of the horizontal straight line given by the left-hand side of the
equation and the curve L(R) defined by the right-hand side of Eq. (S27). Again, if for R > 0
there are two intersections, then one more maximum is at R = 0.

Steady states of the corresponding deterministic model are given by the equation in which the
noise term 1/α is absent:

h1(R) =
1

αβ
R, (S30)

which leads to the equivalent of the Eq. S29:

1

2
= L(R). (S31)

S5 Normalization constant for the protein number distri-
bution of an autoregulated gene

A is a normalization constant of the distribution p1(R) of TF numbers. The explicit form of A
was, to the best of our knowledge, not known to date. We have found that for a given n it can
be presented using standard special functions. A is, in other words, the 0-th moment of p1(R).

µ0 ≡
∫ ∞
0

p1(R)dR, (S32)
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of the following (not normalized) probability distribution

p1(R) = Ra−1e−R/b
[
1 +

(
R

K

)n]−a(1−ε)n

. (S33)

Interestingly, not only µ0, but also higher moments of p1(R) (S33) may be expressed with
the help of known special functions. In this way, one may obtain analytical formulas for the
moments as a function of the model parameters,

µm = µm(a, b,K, ε, n), m = 0, 1, 2 (S34)

We assume that a, b,K, and ε are real and non-negative, and that n is integer. We consider
here n = ±1,±2. The explicit form of µm (S34) can be obtained with the help of Mathematica
symbolic algebra package.

S5.1 n=1

µ0(a, b,K, ε, 1) = πKa csc(πaε)

(
K

b

)−aε
1F̃1

(
a− aε; 1− aε; K

b

)
− πKa csc(πaε)

Γ(a) 1F̃1

(
a; aε+ 1; K

b

)
Γ(a− aε)

. (S35)

In above, csc(πaε) = 1/ sin(z), Γ(z) is a Gamma function, whereas 1F̃1 (α; β; z) is the regular-
ized confluent hypergeometric function

1F̃1 (α; β; z) =
1F1 (α; β; z)

Γ(β)
, (S36)

where by 1F1 (α; β; z) we denote the confluent hypergeometric function.

S5.2 n=2

µ0 = µ0(a, b,K, ε, 2) =
K(a+1)

2Γ
(
1
2
(a− aε)

){

+
2

K

(
b

K

)aε
Γ(aε)Γ

(
1

2
(a− aε)

)
1F2

(
a

2
− aε

2
;
1

2
− aε

2
, 1− aε

2
;−K

2

4b2

)
+

1

K
Γ
(a

2

)
Γ
(
−aε

2

)
1F2

(
a

2
;
1

2
,
aε

2
+ 1;−K

2

4b2

)
− 1

b
Γ

(
a+ 1

2

)
Γ

(
−aε

2
− 1

2

)
1F2

(
a

2
+

1

2
;
3

2
,
aε

2
+

3

2
;−K

2

4b2

)}
. (S37)

In above, 1F2 (α; β1, β2; z) is the generalized hypergeometric function.
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S5.3 n=-1

µ0(a, b,K, ε,−1) =
KaΓ(−a)Γ(aε) 1F1

(
aε; a+ 1; K

b

)
Γ(a(ε− 1))

+

(
1

b

)−a
Γ(a) 1F1

(
a(ε− 1); 1− a;

K

b

)
, (S38)

1F1 (α; β; z) is the confluent hypergeometric function.

S5.4 n=-2

µ0 = µ0(a, b,K, ε,−2) =

(
1
b

)1−a
Ka+1

2Γ
(
1
2
(a− aε)

){

+
1

K

(
1

b

)a−1
Γ
(
−a

2

)
Γ
(aε

2

)
1F2

(
aε

2
;
1

2
,
a

2
+ 1;−K

2

4b2

)
−

(
1

b

)a
Γ

(
−a

2
− 1

2

)
Γ

(
1

2
(aε+ 1)

)
1F2

(
aε

2
+

1

2
;
3

2
,
a

2
+

3

2
;−K

2

4b2

)
+

2b

Ka+1
Γ(a)Γ

(
1

2
a(ε− 1)

)
1F2

(
aε

2
− a

2
;
1

2
− a

2
, 1− a

2
;−K

2

4b2

)}
. (S39)

In above, 1F2 (α; β1, β2; z) denotes the generalized hypergeometric function.

S6 Simulations
We carried out the simulations based on the Gillespie algorithm [6], using the custom program
Mesokin, available at http://pepe.ichf.edu.pl/tabaka/mesokin.tar.gz . Since the trajectories gen-
erated by the simulation are ergodic, we used for simplicity single long trajectories (t = 2×109)
to create histograms. In Tables S3-S8 we present the values of parameters used in our simula-
tions to generate the data shown in Figs. 5, S1-S19. Input files for the simulations are attached
as a supplementary file.

S7 Time scales and parameters of the system
The typical abundance of TFs in E. coli is between several tens and several hundreds of
molecules per cell [7], whereas the levels of proteins, in general, are typically higher, with
top 17% of highly abundant proteins, whose numbers are greater than 2050 copies per cell [8].
In our simulations, the mean TF number at full activation, αβ = 125, the mean target protein
number at full activation, ab = 1250.

In order to fulfil the assumption of Hill kinetics, the promoter fluctuations driven by TF bind-
ing/unbinding should be sufficiently fast. On the other hand, to keep the model realistic, we
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Figure S1: Test of Hill kinetics of TF binding/unbinding. The rate of promoter fluctuations is here varied by
varying the values of koff ≡ kroff,1 = kroff,2 = ktoff,1 = ktoff,2 and kron,1 = 10−3 kron,2 = kton,1 = 10−3 kton,2 such
that K1 = K2 = 70. The values corresponding to koff = 0.005 (black points) have been chosen for simulations
described in the main text. The values of other parameters are shown in Table S4.

have chosen the promoter fluctuations to be as slow as possible without exceeding the range of
validity of our model. In Fig. S1, we tested the protein number distributions corresponding to
different values of the ki,off constant (ki,on being fixed). For the simulations described in the
main text, ki,off = 0.005 has been chosen.

In Fig. S2, we compare the time scales of the simulated processes for K1 = K2 = 70, n =
m = −2 (see also Table S5 for the parameter values used in the simulation for this case). Con-
sistently with typical biological time scales, target mRNA fluctuations are faster than target
protein fluctuations. For our model to be valid, the total number of TFs fluctuates more slowly
than the on-off fluctuations of the downstream promoter, such that the promoter experiences
an approximately constant level of TFs, compared to the time scale of its own transcription.
Interestingly enough, the levels of active TFs fluctuate much faster, constituting the fastest
time scale in the system, but nevertheless, the simulation results presented in this paper show
a very good agreement with the predictions of the theoretical model. Thus, the assumption of
Hill kinetics as the fastest time scale in the system has been slightly relaxed without detriment
to the validity of the model.

The parameters of the downstream gene in our simulations fulfil the assumption under which
the non-regulated gene produces a gamma distribution of proteins [2, 4, 5]: The protein lifetime
is longer than the mRNA lifetime. We checked the expression of such a non-regulated gene, at
three different transcription levels (Fig. S3), and indeed, the distributions of the protein number
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Figure S2: Comparison of the time scales of the simulated biochemical reactions. Parameter values are
shown in Table S5.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0  200  400  600  800  1000  1200  1400

P
ro

b
a
b
ili

ty

Target proteins

0.01*km2
0.5*km2

1*km2

gamma distribution

negative binomial distribution

Figure S3: Protein number distributions of the unregulated downstream gene are well approximated
by the gamma or negative binomial distributions. The three distributions shown correspond to the following
transcription rates: a) leaky level: 0.01km2 = 2.5× 10−5, b) 1/2 of the maximum level: 0.5km2 = 1.25× 10−3,
c) maximum level: km2 = 2.5× 10−3. The values of other parameters are shown in Table S6.

12



P are well modelled by gamma distributions γ(P ; a, b) or negative binomial distributions

g(P ; a, b) =
Γ(a+ P )

Γ(P + 1)Γ(a)

(
b

1 + b

)P (
1− b

1 + b

)a
. (S40)

S8 Response of the cascade in absence of self-regulation
In order to compare the behaviour of the system with a non-regulated and self-regulated Gene 1,
we simulated three different levels of constitutive transcription of the non-regulated Gene 1,
corresponding to the mean burst frequencies: αε1, α/2, and α. The case of the lowest ex-
pression level, αε1, mimics the removal of self-regulation (i.e., the rate of binding of TF to its
own operator kon = 0), however, we also test other expression levels because the removal of
feedback may perhaps change the properties of the promoter so that it could influence the rate
of transcription from its gene. In all the cases discussed below, the Gene 1, as non-regulated,
does not respond to signal and the number of TFs in cells is gamma-distributed (Eq. S11). At
the same time, the downstream genes have graded responses, distribution of their transcription
rates being given by q0(h2) = q0(h2;α, β,K2) (Eq. S14).

The response of the cascade with a removed feedback to an increasing signal is shown in Figs.
S4–S6. Note that the parameter values used for our case study have been chosen such that the
cascade with no feedback has a graded response. The sensitivity of the response corresponds to
different ranges of signal levels, depending on the promoter-TF affinity (early or late responses).
(In general, a cascade without feedback can also have a binary response [3].) The distributions
of the total number of TFs are constant at any signal level because the signal does not affect
TF production, it only defines the active TF fraction.

In Fig. S4, the non-regulated Gene 1 has a very weak constitutive transcription corresponding
to αε1, i.e. to that of the self-regulated Gene 1 at its fully inactive, leaky state. In this case,
the high-affinity promoter responds sensitively. This is also depicted by the intersections of the
transfer function H2 and the corresponding dashed lines, as the limiting case of the geometric
construction in Fig. 4 in the main manuscript. Fig. S5 shows the behaviour of the gene cascade
with the non-regulated Gene 1 set at an intermediate level corresponding to α/2. Here, the
intermediate-affinity promoter responds sensitively. In Fig. S6 we present the response of the
cascade in the case where the transcription of the non-regulated Gene 1 is set at the maximal
level corresponding to α, i.e. to that of the self-regulated Gene 1 at its fully active state. In this
case, the low-affinity promoter responds sensitively. Again, the maxima of these distributions
are shown as the limiting cases of the construction in Fig. 4 in the main manuscript, by the
intersections of H2 and the corresponding dashed lines.
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graded responses. Gene 1 has a very weak constitutive transcription corresponding to mean burst frequency αε1.
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(D,E,F). The values of other parameters are shown in Table S8.

14



0

90

70

40

0

310

150

50

K2 = 0.1K1

Response of the downstream gene to a signal

D E F

Target proteins, P

Target proteins, PTarget proteins, P

x
Target

protein

Gene 1

Gene 2

Transcription

factor

signal molecule

0

10

20

30

40

K2 
K2

K2~ 1/signal

K2~ 1/signal

0

10

20

30

40

0

90

70

40

0

310

150

50

K2 K2

P
ro

b
a
b

ili
ty

, 
p

1
(R

)

A B C

Upstream gene: non-regulated, intermediate expression

Transcription factors, R

Theory

Simulation

Gene 1

Gene 2

Transcription

factor

Signal molecule

Target

protein

x

Transcription factors, R Transcription factors, R

0.000
0 50 100 150 200

0.000
0 50 100 150 200

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 50 100 150 200

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 50 100 150

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 50 100 150 200

0.000

0.010

0.020

0.030

0.040

0.060

0.070

0.080

0 50 100 150 200

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 50 100 150 200

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0 50 100 150 200

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 50 100 150 200

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0 50 100 150 200

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0 50 100 150 2000.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 50 100

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.080

0 50 100 150 200

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 50 100 1500.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 50 100 150 200

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 50 100 1500.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 50 100 150 200

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 50 100 150 200

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 50 100 150
0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 50 100 150 200

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0 50 100 150 200

0.000

0.001

0.002

0.003

0.005

0.006

0.007

0.008

0 500 1000 1500 2000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 1500 2000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 1500 2000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 1500

0.000

0.001

0.002

0.003

0.005

0.006

0.007

0.008

0 500 1000 1500 2000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 1500 2000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 1500 2000

0.000
0 500 1000 1500 2000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 1500 2000

0.000
0 500 1000 1

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 15000.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 20

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.008

0 500 1000 1500 2000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 15000.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 1500 2000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 15000.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 1500 2000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 1500 2000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 1500
0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 1500 2000

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0 500 1000 1500 2000

Low

promoter-TF affinity

Intermediate

promoter-TF affinity

High

promoter-TF affinity

Figure S5: Gene 1, as non-regulated, does not respond to signal and the downstream genes have then graded
responses. Gene 1 has an intermediate constitutive transcription corresponding to mean burst frequency α/2.
Parameters: n = −2,m = −2, α = 25, β = 5, a = 250, b = 5, ε1 = 0.15, ε2 = 0.01. Black dots: simulated protein
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Figure S6: Gene 1, as non-regulated, does not respond to signal and the downstream genes have then
graded responses. Gene 1 has a maximal constitutive transcription corresponding to mean burst frequency α.
Parameters: n = −2,m = −2, α = 25, β = 5, a = 250, b = 5, ε1 = 0.15, ε2 = 0.01. Black dots: simulated protein
number distributions. Filled curves: theoretical distributions, p0(R) in (A,B,C), and q0(h2/[ab]; α, β)/[ab] in
(D,E,F). The values of other parameters are shown in Table S8.
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Figure S7: A, B: Geometric construction as in Fig.2B1. Here, it is shown in two panels for the sake of clarity.
C, D: Distributions as in Fig.2B1, compared with the deterministic steady states. Dotted lines: positions of the
distribution extrema. Dashed lines: positions of deterministic steady states. In A, the intersections of L(R)
(blue) and the m+1

2m line (green) indicate the extrema of the distribution of TF levels. The intersection of L(R)
with the 1/2 line (dark green) indicates the deterministic steady state (Eq. S31). In B, the intersections of
L(R) and H2(R) (red) indicate the extrema of the transcription rate distribution.

S9 Comparison between deterministic and stochastic model
for Figs. 2B1 and 2B2 in main text

In this section, we take a closer look at the relationship between bimodality and bistability in
the stochastic and deterministic versions of our model, using the examples shown in Figs. 2B1
and 2B2 in the main text. We show that the ranges of stochastic bimodality and deterministic
bistability of TF levels do not overlap in Fig. 2B1, and, although they are close, the behaviour
of the system differs in these ranges: When the studied example system from Fig. 2B1 has a
bimodal input and a unimodal output, its deterministic counterpart has a monostable input
and a monostable output. If that same system had a bistable input and a bistable output, its
stochastic version would have a unimodal input and a unimodal output. In Fig.2B2, a unimodal
stochastic input gives rise to a bimodal stochastic output, but bistable input and output are
impossible in the deterministic version of this model in any range of signal intensity.

17



A B

C D

Figure S8: A, B: Geometric construction as in Fig.2B2. Here, it is shown in two panels for the sake of clarity.
C, D: Distributions as in Fig.2B2, compared with the deterministic steady states. Dotted lines: positions of
the distribution extrema. Dashed lines: positions of deterministic steady states. In A, the intersection of L(R)
(blue) and the (m+1)/(2m) line (green) indicates the extrema of the distribution of TF levels. The intersection
of L(R) with the 1/2 line (dark green) indicates the deterministic steady state (Eq. S31).

In Figs. S7 and S8 we show what the Figs. 2B1 and 2B2 would look like if the model were
deterministic.

For the stochastic system as in Fig. 2B1, bimodal input gives rise to a unimodal output, whereas
in the deterministic model the input is monostable and, consequently, so is the output (Fig.
S7). Note that the deterministic input differs much from its stochastic counterpart, but the
outputs are similar in the deterministic and stochastic model. This is because the downstream
gene regulation is overdriven, i. e., it responds to the input in the region where the transfer
function h2 is almost saturated.

For the stochastic system as in Fig. 2B2, a unimodal input gives rise to a bimodal output, but
again, the deterministic input is monostable and it maps into a monostable output (Fig. S8).
Here, the deterministic and stochastic versions differ considerably for both input and output.
It is easy to see that bistable input and output are impossible in this system in any range of
signal intensity.
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Figure S9: Geometric constructions showing the ranges of bimodality/bistability in Fig. 2B. We vary
the signal parameters K1 and K2 and the other parameters are same as in Fig. 2B1 and B2. A: Stochastic
bimodality range for the distribution of TF levels in 2B1: K1 ≈ 62.2 .. 65.2 and K2 ≈ 18.7 .. 19.6. B: Bistability
range for TFs for the deterministic version of the model in 2B1: K1 ≈ 67.1 .. 67.9 and K2 ≈ 20.1 .. 20.4. C:
Stochastic bimodality range for the distribution of transcription rates in Fig.2B2: K1 = K2 ≈ 63.9 .. 72.6.
Dotted lines: upper limit; dashed lines: lower limit. Red: H2(R); blue: L(R); green: (m+ 1)/(2m) level; dark
green: 1/2 level.

In Fig. S9 we compare the ranges of the signal parameter values in which bimodality or
bistability occurs in the stochastic or deterministic versions of the model. These ranges do
not overlap. In Fig.2B1, the range of stochastic bimodality of the distribution of TF levels
was K1 ≈ 62.2 .. 65.2 and K2 ≈ 18.7 .. 19.6 (Fig. S9A; note that K1 is proportional to
K2). The corresponding range of deterministic bistability is different, although quite close:
K1 ≈ 67.1 .. 67.9 and K2 ≈ 20.1 .. 20.4 (Fig. S9B). For completeness, in Fig. S9C, we show
the range of stochastic bimodality of the distribution of transcription rates for Fig.2B2: for
parameter values used in that figure, the range was K1 = K2 ≈ 63.9 .. 72.6.

Using the above information, we checked what the Fig.2B1 would look like if the signal pa-
rameters were in the range of deterministic bistability. In that range, there is no stochastic
bimodality. We have chosen the values of signal parameters K1 = 67.4 and K2 = 20.22. Fig.
S10 demonstrates that in the range of deterministic bistability the behaviour of the system is
different than it was in the range of stochastic bimodality: The relationship between determin-
istic steady states and stochastic extrema is different than it was in Fig. S9A,C. Here, two
stable steady states of TF levels will lead to two stable steady states of transcription rates
according to the deterministic model. The corresponding stochastic model predicts, on the
other hand, a unimodal input and a unimodal output.
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Figure S10: A, B: Geometric construction as in Fig.2B1, but with K1 = 67.4 and K2 = 20.22, i. e., in the
range of bistability of the deterministic version of the model. Here, the construction is shown in two panels
for the sake of clarity. C, D: Distributions of TF levels (B) and transcription rates (C), compared with the
deterministic steady states. Dotted lines: positions of the distribution extrema. Dashed lines: positions of
deterministic steady states. In A, the intersection of L(R) (blue) and the (m + 1)/(2m) line (green) indicates
the maximum of the distribution of TF levels. The intersection of L(R) with the 1/2 line (dark green) indicates
the deterministic steady states (Eq. S31).

S10 Dependence of distribution shape on leakage
In the examples shown in Fig.2B in the main text, we assumed a significant amount of promoter
leakage, at least in the regulatory promoter (ε1 = 0.1, ε2 = 0.2 in Fig.2B1, ε1 = 0.15, ε2 = 0.01
in Fig.2B1). The reason for this choice was twofold: 1. Considerable basal transcription is
common in wild-type genes [9, 10], see also [1]. 2. Our method of geometric construction sug-
gests that a higher leakage allows for a richer spectrum of behaviours of the gene cascade with
a positively self-regulated upstream gene. Namely, the “bimodal input to unimodal output” or
“unimodal input to bimodal output” behaviours are obtained more easily when the regulatory
promoter is more leaky. We show this on the examples below:

In Fig. S11 we plot the geometric construction, input and output distributions for a system
with the same parameters as in Fig.2B1, except for the leakage, which is much lower: ε1 = 0.02,
ε2 = 0.02. Here, the leakiness of the regulatory promoter is so low that it is more difficult to
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Figure S11: Behaviour of the system with the same parameters as in Fig.2B1 in the main text, except for the
leakage, which is much lower: ε1 = 0.02, ε2 = 0.02. The “bimodal input to unimodal output” behaviour is not
present here: The input is unimodal and the output is visually unimodal as well (although it is mathematically
bimodal). A: Geometric construction. Blue: L(R); red: H2(R); green: (m + 1)/(2m). B: Distribution of
TF levels. C: Distribution of transcription rates. D: Distribution of transcription rates, log scale, to show an
extremely small bimodality.

obtain the situation when the expression of the upstream gene is bimodal, and the expression
of the downstream gene is unimodal. This is because it is difficult to obtain the L(R) curve
that intersects the (m + 1)/(2m) line twice, and, at the same time, to place the L(R) curve
below the H2(R) curve in such a way that L(R) and H2(R) have just one intersection. In this
example, at low leakage in both genes, we get a unimodal input and a practically unimodal
output, although it is mathematically bimodal.

It is, however, still possible to observe a behaviour at low leakage that is very close to the
“bimodal input to unimodal output” behaviour (Fig. S12). At a certain choice of parameters
(n = m − 2, α = 150, β = 2, K1 = 130, K2 = 1, ε1 = 0.02, ε2 = 0.02), we can get a strongly
bimodal input leading to a practically unimodal output (although here the output distribution
is mathematically bimodal).

In Fig. S13 we plot the geometric construction, and the input and output distributions for a
system with same parameters as in Fig.2B2, where the “unimodal input to bimodal output”
behaviour was shown, but we changed the leakage to ε1 = 0.02 and ε2 = 0.02, as above. Here,
at a lower leakiness of the regulatory promoter, the L(R) curve is moved upwards, so that it
cannot intersect H2(R) twice. As a result, we obtain a unimodal input and a unimodal output.

Again, it is possible to find a set of parameters for which the gene system shows the “unimodal
input to bimodal output” behaviour at low leakage in the regulatory promoter. At n = m = −2,
α = 25, β = 5, K1 = 70, K2 = 1, ε1 = 0.02, ε2 = 0.02, we have a unimodal input and a strongly
bimodal output (Fig. S14).
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Figure S12: Behaviour at low leakage that is very close to the “bimodal input to unimodal output” behaviour.
Parameters: n = m − 2, α = 150, β = 2, K1 = 130, K2 = 1, ε1 = 0.02, ε2 = 0.02. A: Geometric construction.
Blue: L(R); red: H2(R); green: (m + 1)/(2m). B: Distribution of TF levels. C: Distribution of transcription
rates. D: Distribution of transcription rates, zoomed, to show an extremely small bimodality.

A B C

Figure S13: Behaviour of the system with the same parameters as in Fig.2B2 in the main text, except for
the leakage, which is much lower: ε1 = 0.02, ε2 = 0.02. The “unimodal input to bimodal output” behaviour is
not present here: The input and output are unimodal. A: Geometric construction. Blue: L(R); red: H2(R);
green: (m+ 1)/(2m). B: Distribution of TF levels. C: Distribution of transcription rates.

A B C

Figure S14: “Unimodal input to bimodal output” behaviour at low leakage. Parameters: n = m = −2,
α = 25, β = 5, K1 = 70, K2 = 1, ε1 = 0.02, ε2 = 0.02. A: Geometric construction. Blue: L(R); red: H2(R);
green: (m+ 1)/(2m). B: Distribution of TF levels. C: Distribution of transcription rates.
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Figure S15: Example of a trimodal distribution q(h2), parameters: n = −8, m = −8, α = 20, β = 5,
ε1 = 0.01, ε2 = 0.01, K1 = 37, K2 = 97. (A) Geometric construction. (B) Distribution of transcription rates,
q(h2).

S11 Example of a trimodal transcription rate distribution
In Fig. S15 we show an example of an exotic, trimodal distribution q(h2), for parameters:
n = −8, m = −8, α = 20, β = 5, ε1 = 0.01, ε2 = 0.01, K1 = 37, K2 = 97.
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Figure S16: Zoomed view of Fig. 5D from the main manuscript: The slight bimodality predicted by the
model for K1 = 62 and K2 = 5K1 is blurred by intrinsic noise. The values of other parameters are shown in
Table S3.

S12 Zoomed view of Fig. 5D from the main manuscript
In Fig. S16 we present a zoomed view of Fig. 5D from the main manuscript. It shows that the
slight bimodality predicted by the model for K1 = 62 and K2 = 5K1 is blurred by intrinsic
noise.

S13 Coefficients of variation and Fano factors of the dis-
tributions

In Fig. S17 we compare the coefficient of variation (CV) and Fano factor (FF) of the distri-
butions shown in Fig. 5 in the main manuscript (parameters: n = m = −2, α = 25, β = 5
ε1 = 0.15, ε2 = 0.01, K2 = 5K1, K1, 0.1K1). CV is the ratio of standard deviation to mean of
the distribution. FF is the ratio of variance to mean of the distribution. CV (Fig. S17A), as a
dimensionless quantity, is more suitable for such comparison. In particular, FF (Fig. S17B) for
distributions of transcription rates q(h2) is much lower than FF for the distribution of protein
numbers p1(R) because the values of the relative transcription rate h2 are less than 1, whereas
the TF numbers are much greater than 1.

Interestingly enough, the values of CV and FF are not very informative as to the apparent
width or the bimodality of a distribution, when we look at the whole possible range of distri-
butions driven by the external signal, i.e., the TF numbers from αβε1 to αβ, or the relative
transcription rates of the downstream genes from ε2 to 1. In Figs. S17C-F we show distribu-
tions for arbitrarily chosen values of parameters K1, such that their shapes are visually the
widest possible for a given set of the remaining parameters. (To date, there is no widely ac-
cepted universal statistical measure of bimodality, and for this reason, we decided to make the
arbitrary choice, just for the purpose of visualisation.) The corresponding values of FF and CV
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Figure S17: Coefficient of variation (CV) and Fano factor (FF) of the distributions shown in Fig. 5 in the
main manuscript (parameters: n = m = −2, α = 25, β = 5 ε1 = 0.15, ε2 = 0.01, K2 = 5K1,K1, 0.1K1). A and
B: CV and FF of the distribution of the number of TFs, p1(R) (black), compared with the CV and FF of the
distributions of transcription rates of the downstream gene, q(h2;K1,K2) (blue, green, red). Squares denote
the values of CV and FF for arbitrarily chosen values of parameters K1, such that the distributions are visually
the widest possible for a given set of the remaining parameters. Circles denote the values of CV and FF for
the maximal FF. Triangles denote the values of CV and FF for the maximal CV. C-F: Corresponding visually
widest distributions. G-J: Distributions having the maximal FF. K-N: Distributions having the maximal CV.
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for these distributions are marked by squares in Figs. S17A and B. It turns out that these are
not maximal values of FF or CV. The shapes of the distributions corresponding to maximal FF
(Fig. S17G-J) and maximal CV (Fig. S17K-M) appear narrower and usually are not bimodal.

It can, however, be noticed that out of the three downstream genes whose promoter affinities
to TF are lower, same or higher than in the upstream gene, the highest CV and FF is reached
by the gene whose promoter is equally sensitive to TF as the regulatory gene’s promoter. In
other words, the overlap of sensitivity regions of their transfer functions leads to the increased
noise.

S14 Precision of response of the target gene to external
signal

The relative distribution width, being a measure of (im)precision of gene’s response to external
signal, is given by the formula

W (K1) =
σK1

|µ∞ − µ0|,
(S41)

where σK1 is the standard deviation of a distribution at the signal level measured by K1, µ∞
is the mean of the distribution at K1 = ∞, and µ0 is the mean of the distribution at K1 = 0.
Numerical calculation of means and standard deviations of the TF number distribution p1(R)
(Eq. S15) and transcription rate distribution of the target gene q(h2) (Eq. S16) can be easily
performed (we used Maple software). However, direct calculation of means and standard devi-
ations of the target protein distribution p2(P ) in the form of intrinsic noise representation (Eq.
S8) is more computationally expensive, as it involves integration of q(h2) with the distribution
of intrinsic noise g(P, h2) of the target gene. To overcome this problem, we note that when the
intrinsic noise of the target gene is gamma-distributed (Eq. S9), we can use the intrinsic noise
representation (Eq. S8) to separate the moments of q(h2) and g(P, h2):

µp2(P,K1) = ab µq(h2, K1), (S42)

σ2
p2

(P,K1) = ab2 µq(h2, K1) + a2b2 σ2
q (h2, K1). (S43)

In the above equations, µp2(P,K1) and σ2
p2

(P,K1) are the mean and variance of the distribu-
tion p2(P,K1) at a given value of the signal parameter K1, whereas µq(h2, K1) and σ2

q (h2, K1)
are the mean and variance of the distribution q(h2, K1), which can be calculated numerically
without unnecessary computational cost.

The mean of g(P ) is ab and variance is ab2, a being the mean burst frequency of the downstream
gene at its maximal activity, and b being the mean burst size of the target gene. Then the
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Figure S18: Geometric construction for a cascade where the upstream gene is positively autoregulated and
the downstream gene is negatively regulated. The construction is a shifted mirror image of that for both genes
regulated positively (Fig. 5 in the main text). Parameters: n = −2, m = 2, α = 25, β = 5, a = 250, b = 5,
ε1 = 0.15, ε2 = 0.01. Coloured dots are manually added guides to the eye that mark the intersections of the
curves.

relative width of the distribution of target proteins is

W (K1) =

√
ab2 µq(h2, K1) + a2b2 σ2

q (h2, K1)

ab(1− ε2)
,

=
1

1− ε2

√
µq(h2, K1)

a
+ σ2

q (h2, K1). (S44)

where ε2 is the leakage of the target gene.
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Figure S19: The response of the positively autoregulated upstream gene and the corresponding response of
the negatively regulated downstream gene to varying signal. Parameters are the same as in Fig. S18. Black
dots represent protein number distributions p2(P ) obtained from simulation. Theoretical curves are p1(R) in
the top panels, and the rescaled distributions of transcription rates, 1

abq(
P
ab ) in the bottom panels. The values

of other parameters are shown in Table S3.
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S15 Upstream gene positively autoregulated, downstream
gene negatively regulated

In Fig. S18 we present the geometric construction for a cascade where the upstream gene is
positively autoregulated (n = −2) and the downstream gene is negatively regulated (m = 2).
The construction is a shifted mirror image of that for both genes regulated positively (Fig. 5
in the main text), where m was equal to −2.

Fig. S19 shows the response of the positively autoregulated upstream gene and the correspond-
ing response of a negatively regulated downstream gene to a varying signal. The theoretical
curves q(h2) are mirror images of those for both genes regulated positively (Fig. 6 in the main
text).
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S16 Considerations about the experimental measurement
of transfer functions

Below we use the following notation: In the original system, Gene 1 consists of the promoter pR
and the coding sequence of the protein R. Gene 2 consists of the promoter pP and the protein
P coding sequence. R is a TF for both Gene 1 and Gene 2 (Fig. S20A).

In experimental realisation of our system, one has to face two main difficulties in measurement of
the transfer functions h1(R) and h2(R) of the two promoters: Firstly, Gene 1 is self-regulating.
Therefore, one needs to disrupt the feedback loop in order to gain the control over the input of
the pR promoter [11]. Secondly, the input levels can be noisy even if one controls their mean.
During transmission of the noisy input into a noisy output, the shape of the input distribution
will be nonlinearly distorted [3]. It is therefore not certain whether the “mean input vs. mean
output” curve will have the same shape as the transfer function hi(R) in the deterministic
model. Below we test the parameter values used in Fig. 2 to see whether the “mean input vs.
mean output” curves, produced by our stochastic model for Gene 1 and 2, well approximate
the corresponding transfer functions.

S16.1 Opening of the feedback loop

We propose to apply a method similar to that described in [11], where the self-regulating gene
is divided into two parts (Fig. S20):

1. In order to produce R in a controlled manner, one needs to place the R coding sequence
under the control of a custom promoter pA, regulated by a protein A.

2. In order to measure the response of pR promoter to R, we need to place the reporter
protein B coding sequence under the control of pR.

3. The construct described in the point 1 can also be used to measure the response of pP to
R.

There are two ways of control of the mean level of R in the above system: By the level of A or
by the level of the inducer that activates R.

S16.2 Mean level of R protein controlled by the level of A protein

In this version of the method, we vary A concentration in cells, to obtain varying mean levels
of the transcription factor R, which in turn causes a varying response of the promoter under
study. At the same time, we keep the inducer (i. e., the signal affecting the transfer function)
at some fixed level such that a given fraction fa of all R molecules are active. Importantly, we
need to ensure that the levels of A are the same in all cells, i. e., that our control over A is not
noisy. Otherwise, we would add another level of noise to the system.
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Depending on the A level, we get a varying input distributions of R proteins, given by the
gamma distribution (Eq. S11). Since A is a transcription factor for pA, its level affects the rate
of transcription from that promoter, resulting in variation in parameter α = α(A):

p0(R;α(A), β) = γ(R;α(A), β) (S45)

Note that the varying α(A) changes the shape of the distribution of R. p0(R;α(A), β) affects
the promoter pR and leads to a distribution q0(h1;α(A), β,K1) of transcription rates from that
promoter (Eq. S14) in cell population.

In reality, it is impossible to directly measure the response q0(h1;α(A), β,K1) of pR promoter.
instead, we need to measure the distribution of reporter proteins B:

pB(B;A) =

∫ 1

ε1

q0(h1;α(A), β,K1) γ(B; ah1, b) dh1, (S46)

where B is the level of B protein, ε1 is the leakage of the pR promoter, a is the mean burst
frequency of B proteins, and b is their mean burst size.

However, the mean response 〈B〉 of the pR promoter scales linearly with the mean transcription
rate 〈h1〉:

〈B(A)〉 =

∫ ∞
0

B pB(B;A)dB (S47)

=

∫ ∞
0

B

∫ 1

ε1

q0(h1;α(A), β,K1) γ(B; ah1, b) dh1 dB (S48)

=

∫ 1

ε1

[∫ ∞
0

B γ(B; ah1, b) dB

]
q0(h1;α(A), β,K1) dh1 (S49)

= ab

∫ 1

ε1

h1 q0(h1;α(A), β,K1) dh1 (S50)

= ab〈h1(A)〉. (S51)

And therefore, below we will safely use 〈h1〉 =
∫ 1

ε1
h1 q0(h1) dh1 instead of 〈B〉, because, within

our model, intrinsic noise of downstream promoters does not distort their mean response.

To a given mean input at some A level, 〈R〉A = α(A)β, we ascribe a given mean output 〈h1〉A:

hstoch,1 : 〈R〉A → 〈h1〉A. (S52)

We compare this stochastic transfer function hstoch,1(〈R〉A) of the pR promoter with the the-
oretical deterministic transfer function h1(〈R〉A) = h1(α(A)β), given by the Eq. S6. In the
same way, we compare the stochastic transfer function hstoch,2(〈R〉A) : 〈R〉A → 〈h2〉A of the pP
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B

Figure S21: Very good agreement between the stochastic and deterministic transfer functions for our model
with parameter values same as in Fig. 2 in the main text. A: Mean level of R protein controlled by the level of
A protein assuming that fa=1. B: Mean level of R protein controlled by the level of inducer, with assumption
that fa = 1/2 in Fig. 2. Assuming fa = 1 we get the results equivalent to those in Fig. A (grey curves). The
index i in hi is equal to 1 or 2, for the upstream or downstream gene.

promoter with the corresponding deterministic transfer function h2(〈R〉A), given by the Eq. S7.

Using this method in experiment, one determines the transfer function h1(R) (or h2(R)) for a
given signal level (which corresponds to some fraction fa of active TFs), using the cooperativity
n (or m) and the K parameter as fitting parameters, while varying the (known) mean number
of TFs, 〈R〉A. Note that the second method, described below in subsection S16.3, requires
different fitting parameters.

In Fig S21A we present the comparison between the stochastic and deterministic transfer func-
tions for our model with parameter values same as in Fig. 2 in the main text. We assumed
that the parameter α of the pA promoter is same as in Fig. 2, i. e., as in the original Gene 1
with pR promoter. Parameter β is also assumed to be the same as in the original Gene 1. Note
that the range in which the curves can be measured is limited by the native minimal and max-
imal mean transcription frequencies, αε1 and α of the pA promoter. The curves obtained from
the stochastic model (mimicking the experimental curves) are in a very good agreement with
the deterministic transfer functions. One should keep in mind, however, that the differences
between experimental data and theory may be greater if the real gene system contains more
sources of noise than those covered by our model [11], or, perhaps, if the parameter values are
in a different range.

S16.3 Mean level of R protein controlled by the level of inducer

In this version of the method, we vary the inducer concentration in cells, to obtain varying
mean levels of active R. Here, we keep the promoter pA always maximally active by applying a
high level of protein A. One can also use a highly active constitutive promoter as pA, without
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the regulator A. As a result, the mean levels of R will be maximal, and we only control the
fraction fa of R which are active due to inducer binding. We need to ensure that the levels of
inducer in all cells are the same, i. e., that we have a deterministic control over the inducer.
The difficulty of this method lies in the fact that we need to be able to measure not only the
levels of R but also, separately, the levels of its active fraction fa.

Now the promoter pA produces a distribution of R proteins, which is not varied:

p0(R;α, β) = γ(R;α, β). (S53)

We only change the active fraction fa of R proteins, so, differently than in the subsection S16.2,
the shape of the distribution of the active proteins, Ra, will always be the same, only rescaled
by the factor fa:

p0,a(Ra) =
1

fa
γ

(
Ra

fa
;α, β

)
. (S54)

It should be noted that varying fa we vary the K1 parameter in the transfer function h1. For
h1(R, fa) = H1(R, fa)(1− ε1) + ε1, we have

H1(R, fa) =
1

1 +
(
R
K1

)n =
1

1 +
(
faR
κ1

)n , (S55)

where

κ1 = faK1 =

(
kaon,1...k

a
on,n

kaoff,1...k
a
off,n

)−1/n
, (S56)

see Eq. S5.

The varying fraction of active R proteins affects the promoter pR and gives rise to a varying
distribution q0(h1;α, β, κ1/fa) of transcription rates (Eq. S14). We calculate the mean of that
distribution, 〈h1〉fa .

To a given mean input 〈Ra〉fa = faαβ = fa〈R〉 we ascribe a given mean output 〈h1〉fa , similarly
as in Eq. S52, in order to get the stochastic transfer function, hstoch,1(〈R〉, fa). We compare
it to the deterministic transfer function h1(〈R〉, fa). Note that 〈R〉 is fixed in these functions
and we only vary fa. The analogous procedure should be used for measurement of the transfer
function h2(R) of the pP promoter.

In the present version of the method, the experimentalist should determine the transfer function
by fitting the cooperativity n (or m) and the parameter κ1 (or κ2), knowing the total mean
number of TFs, 〈R〉, and their (varying) active fraction fa. Note that these are different fitting
parameters than in the method described above in the subsection S16.2. The original K1 (K2)
parameter of the transfer function for a given active fraction fa of TFs is obtained from the Eq.
S56.
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Fig S21B shows the comparison between the stochastic and deterministic transfer functions for
our model with parameter values same as in Fig. 2 in the main text. We assumed that the
parameter α of the pA promoter is same as in Fig. 2, i. e., as in the original Gene 1 with pR
promoter. Parameter β is also assumed to be the same as in the original Gene 1. Note that
in order to parametrize the model as in the measurement method described in this section, we
need to know what value of fa was present in Fig. 2 (in an experiment, this value should be
known from measurement). Here, for the purpose of illustration, we arbitrarily assumed that
fa was equal to 1/2 (coloured curves). Note that assuming fa = 1 we get the results equivalent
to those in the subsection S16.2 (grey curves).
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Figure K1 K2 k+ kton,1 kton,2
5 A,D; S19 A,D 10 50 0.03774 4e-6 4e-3
5 A,D; S19 A,D 30 150 0.003578 4e-6 4e-3
5 A,D; S16; S19 A,D 62 310 0.001461 4e-6 4e-3
5 B,E; S19 B,E 40 40 0.002463 2e-5 2e-2
5 B,E; S19 B,E 70 70 0.001273 2e-5 2e-2
5 B,E; S19 B,E 90 90 0.0009630 2e-5 2e-2
5 C,F; S19 C,F 100 10 0.0008584 2e-4 2e-1
5 C,F; S19 C,F 200 20 0.0004116 2e-4 2e-1
5 C,F; S19 C,F 300 30 0.0002707 2e-4 2e-1
5 C,F; S19 C,F 400 40 0.0002016 2e-4 2e-1

k− kron,1 kroff,1 kron,2 kroff,2 ktoff,1 ktoff,2
1e-2 2e-5 5e-3 2e-2 5e-3 5e-3 5e-3

kml1 km1 kml2 km2 kp1 kp2
3.75e-5 2.5e-4 2.5e-5 2.5e-3 5e-4 5e-4

kdm1 kdm2 kdp1 kdp2 Simulation time
1e-4 1e-4 1e-5 1e-5 2e9

Table S3: Parameters for Figs. 5, S16, S19

kron,1 kroff,1 kron,2 kroff,2 kton,1 ktoff,1 kton,2 ktoff,2
2e-3 5e-1 2 5e-1 2e-3 5e-1 2 5e-1
2e-4 5e-2 2e-1 5e-2 2e-4 5e-2 2e-1 5e-2
2e-5 5e-3 2e-2 5e-3 2e-5 5e-3 2e-2 5e-3
2e-6 5e-4 2e-3 5e-4 2e-6 5e-4 2e-3 5e-4

k+ k− kml1 km1 kml2 km2

0.001273 1e-2 3.75e-5 2.5e-4 2.5e-5 2.5e-3

kp1 kp2 kdm1 kdm2 kdp1 kdp2
5e-4 5e-4 1e-4 1e-4 1e-5 1e-5

Simulation time
2e9

Table S4: Parameters for Fig. S1

kron,1 kroff,1 kron,2 kroff,2 kton,1 ktoff,1 kton,2 ktoff,2
2e-5 5e-3 2e-2 5e-3 2e-5 5e-3 2e-2 5e-3

k+ k− kml1 km1 kml2 km2

0.001273 1e-2 3.75e-5 2.5e-4 2.5e-5 2.5e-3

kp1 kp2 kdm1 kdm2 kdp1 kdp2 Simulation time
5e-4 5e-4 1e-4 1e-4 1e-5 1e-5 2e6

Table S5: Parameters for Fig. S2, K1 = K2 = 70.
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km2

2.5e-5
1.25e-3
2.5e-3

kp2 kdm2 kdp2 Simulation time
5e-4 1e-4 1e-5 2e9

Table S6: Parameters for Fig. S3 (non-regulated gene).

kml2 km2 kdp2
2.5e-4 25e-3 1e-4
12.5e-5 12.5e-3 5e-5
2.5e-5 2.5e-3 1e-5
12.5e-6 12.5e-4 5e-6
2.5e-6 2.5e-4 1e-6

kron,1 kroff,1 kron,2 kroff,2 kton,1 ktoff,1 kton,2 ktoff,2
2e-5 5e-3 2e-2 5e-3 2e-5 5e-3 2e-2 5e-3

k+ k− kml1 km1

0.001273 1e-2 3.75e-5 2.5e-4

kp1 kp2 kdm1 kdm2 kdp1 Simulation time
5e-4 5e-4 1e-4 1e-4 1e-5 2e9

Table S7: Parameters for Fig. 7, K1 = K2 = 70.

Figure K2 k+ kton,1 kton,2
S4, S5, S6 A,D 50 0.03774 4e-6 4e-3
S4, S5, S6 A,D 150 0.003578 4e-6 4e-3
S4, S5, S6 A,D 310 0.001461 4e-6 4e-3
S4, S5, S6 B,E 40 0.002463 2e-5 2e-2
S4, S5, S6 B,E 70 0.001273 2e-5 2e-2
S4, S5, S6 B,E 90 0.0009630 2e-5 2e-2
S4, S5, S6 C,F 10 0.0008584 2e-4 2e-1
S4, S5, S6 C,F 20 0.0004116 2e-4 2e-1
S4, S5, S6 C,F 30 0.0002707 2e-4 2e-1
S4, S5, S6 C,F 40 0.0002016 2e-4 2e-1

Figure km1

S4 3.75e-5
S5 12.5e-5
S6 2.5e-4

k− ktoff,1 ktoff,2
1e-2 5e-3 5e-3

kml2 km2 kp1 kp2
2.5e-5 2.5e-3 5e-4 5e-4

kdm1 kdm2 kdp1 kdp2 Simulation time
1e-4 1e-4 1e-5 1e-5 2e9

Table S8: Parameters for Figs. S4, S5, S6.
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