Solution behaviour of poly(N -isopropylacrylamide) stereoisomers: a molecular dynamics simulation study

G. Paradossi and E. Chiessi*

Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, 00133 Rome, Italy
*Corresponding author. E-mail: ester.chiessi@uniroma2.it

Electronic Supplementary Information

Contents

1. Interchain Radial Distribution Functions (page 2)

Figure 1. Radial Distribution Functions between Atoms Belonging to Different PNIPAM Chains of m45_2 at 323 K
2. Polymer-Polymer Hydrogen Bonding (page 3)

Table 1. Features of Polymer-Polymer Hydrogen Bonding
3. Coil-Globule Transition of Single Chains above the LCST (page 4)

Figure 2. Time behaviour of the radius of gyration of A and B chains of m45_2 and m59_2 at 323 K
4. Time Evolution of Inter-residue Contacts (page 5)

Figure 1. Radial distribution functions between atoms belonging to different PNIPAM chains, calculated for m45_2 at 323 K in a time interval of 30 ns within the production run. (a) CE _ $C F(A)-C E _C F(B)$ and $\mathrm{CI}(A)-\mathrm{CI}(B)$, red and blue curve, respectively. (b) $C E=C F(A)-C I(B)$. (c) $N(A)-O C(B)$.
The letters A and B indicate the chain, CE and CF are the carbon atoms of the methyl groups of the isopropyl moiety and Cl is the tertiary carbon atom of the isopropyl moiety. N and OC are nitrogen and oxygen atom of the amide group.
2. Polymer-Polymer Hydrogen Bonding

Table 1. Features of Polymer-Polymer Hydrogen Bonding

Temperature (K)	System	Chain	Number	Fraction of HB's between selected pairs of residues					
			of HB's per residue ${ }^{a}$	$\mathrm{n}-(\mathrm{n}+1)^{\text {b }}$	$\mathrm{n}-(\mathrm{n}+2)^{\text {c }}$	$\mathrm{n}-(\mathrm{n}+3)^{\text {d }}$	$\mathrm{n}-(\mathrm{n}+4)^{\text {e }}$	$\mathrm{n}-(\mathrm{n}+5)^{\dagger}$	$\begin{aligned} & \mathrm{n}-(\mathrm{n}+\mathrm{k})^{\mathrm{g}} \\ & \mathrm{k}>5 \end{aligned}$
283	m45_2	A	0.07(1)	0.54	0.39	0.00	0.06	0.00	0.01
		B	0.07(1)	0.51	0.41	0.00	0	0	0.08
	m59_2	A	0.09(1)	0.71	0.19	0.05	0.01	0	0.04
		B	0.06(1)	0.34	0.63	0.00	0	0	0.03
323	m45_2	A	0.12(2)	0.64	0.29	0.01	0	0.02	0.04
		B	0.12(2)	0.41	0.42	0.08	0.08	0.00	0.00
	m59_2	A	0.14(2)	0.69	0.12	0.03	0.15	0	0.01
		B	0.14(2)	0.50	0.36	0.03	0.02	0	0.09

${ }^{\text {a }}$. Time average and standard deviation over the production run.
${ }^{\mathrm{b}}$. Fraction of HB's formed between adjacent residues.
${ }^{\text {c }}$. Fraction of HB^{\prime} 's formed between residues separated by 1 repeating unit.
${ }^{\text {d }}$. Fraction of HB's formed between residues separated by 2 repeating units.
${ }^{e}$. Fraction of HB's formed between residues separated by 3 repeating units.
${ }^{f}$. Fraction of HB's formed between residues separated by 4 repeating units.
${ }^{g}$. Fraction of HB's formed between residues separated by more than 4 repeating units.

Figure 2. (a) Time behaviour of the radius of gyration of A and B chains (purple and brown curves, respectively) of m45_2 at 323 K . (b) Time behaviour of the radius of gyration of A and B chains (green and violet curves, respectively) of m59_2 at 323 K .

4. Time Evolution of Inter-residue Contacts

The matrix of the mean smallest distances between atoms of pairs of residues was calculated with a time average of 2 ns along the whole trajectory. Residues numbered from 1 to 30 form the first 30 -mer, residues numbered from 31 to 60 form the second 30 -mer. The 105 images of the map were collected in a movie, displaying the time behaviour of both intra and interchain contacts between residues. The residues located within isotactic sequences were labelled with a dot on the diagonal of the matrix, at the aim to highlight a preferential connectivity of such chain regions. The label PR in the movie indicates the time interval of production run.

Below the LCST:
files movie_m45_2_283K.avi, movie_m59_2_283K.avi

Above the LCST:
files movie_m45_2_323K.avi, movie_m59_2_323K.avi.

