A Comparative Study of Surface Energies and Water Adsorption on Ce-Bastnästite, La-Bastnästite, and Calcite via Density Functional Theory and Water Adsorption Calorimetry

Sriram Goverapet Srinivasan⁺, Radha Shivaramaiah[#], Paul R. C. Kent^{§, ‡}, Andrew G. Stack⁺, Richard Riman^I, Andre Anderko[‡], Alexandra Navrotsky^{#,*}, Vyacheslav S. Bryantsev^{+, *}

⁺Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak

Ridge, TN 37831, USA

*Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA

^{\$}Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA

[‡]Computer Science and Mathematics Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831, USA

¹Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, 607 Taylor Road, Piscataway, New Jersey 08855, USA

⁺OLI Systems, Inc., 240 Cedar Knolls Road, Suite 301, Cedar Knolls, New Jersey 07927, USA

Electronic Supplementary Information (ESI) Available: Geometric features of Ce-bastnäsite surfaces computed using the large-core pseudopotential, overlays of cleaved and optimized structures of Ce-bastnäsite and calcite surfaces, crystallographic information files containing optimized structures of the studied surfaces obtained from VASP calculations, and adsorption isotherm for CeFCO₃ with corresponding calorimetric trace.

Structure	r_{C-0}^{min} (Å)	r_{C-0}^{max} (Å)	$r_{C-0}^{avg}(\text{\AA})$	$r_{Ce-F}^{min}(\text{\AA})$	$r_{Ce-F}^{max}(A)$	$r_{Ce-F}^{avg}(A)$	$\Delta_{C-O}(\%)$	$\Delta_{Ce-F(\%)}$	$\delta_{C-0}(\%)$	$\delta_{Ce-F}(\%)$
Ce - Bastnäsite with f' electrons included in the core										
Bulk	1.289	1.292	1.291	2.394	2.407	2.399	0	0	0.26	0.54
[10 ¹ 0]-(a)	1.275	1.314	1.291	2.297	2.452	2.383	0.04	-0.65	3.07	6.49
[10 ¹ 0]-(b)	1.277	1.326	1.291	2.297	2.478	2.383	0.02	-0.65	3.78	7.60
[10 ¹ 1]–CO ₃ ^{2–}	1.257	1.350	1.294	2.262	2.566	2.388	0.26	-0.45	7.18	12.73
$[10^{1}1] - Ce^{3+}$	1.258	1.352	1.295	2.297	2.594	2.397	0.29	0.10	7.29	14.05
[10 ¹ 1]–F ⁻	1.245	1.365	1.295	2.108	2.556	2.380	0.35	-0.80	9.26	18.84
$[10\overline{1}1]$ –CeF ²⁺	1.265	1.347	1.294	2.247	2.568	2.389	0.23	-0.43	6.32	13.46
[10 ¹ 1]–CeFCO ₃	1.261	1.354	1.295	2.231	2.583	2.388	0.29	-0.44	7.19	14.72
[1012]	1.257	1.358	1.294	2.283	2.475	2.393	0.21	-0.23	7.84	8.06
$[0001] - CO_3^{2-}$	1.256	1.392	1.298	2.308	2.571	2.428	0.58	1.20	10.48	10.85
[0001]–CeF ²⁺	1.253	1.364	1.295	2.123	2.435	2.352	0.34	-1.94	8.58	13.26
$[11^{\overline{2}}2]$	1.238	1.358	1.296	2.287	2.589	2.365	0.40	-1.40	9.28	12.77
[1014]	1.212	1.430	1.295	2.296	2.598	2.413	0.34	0.58	16.84	12.53

Table S1: C-O and Ce-F bond lengths in Ce-Bastnäsite computed using the large-core pseupopotential.

The percentage change in the average C–O and Ce–F bond lengths with respect to the bulk, Δ_{C-O} and Δ_{Ce-F} , is calculated using equation (3). The percentage of spread in the C–O and Ce–F bond lengths with respect to the average C–O and Ce–F bond lengths in each structure, δ_{C-O} and δ_{Ce-F} , is calculated using equation (4).

Figure S1: Optimized structure of calcite $[10^{1}4]$ and Ce-bastnäsite $[10^{1}0]$ -(a) and $[10^{1}0]$ -(b) surfaces. Ca atoms are blue, Ce atoms are yellow, O atoms are red. C atoms are brown, F atoms are blue. Atoms from the cleaved structure are superimposed using white spheres.

Figure S2: Optimized structure of the Ce-bastnäsite $[10^{1}2]$ and $[10^{1}4]$ surfaces. Ce atoms are yellow, O atoms are red. C atoms are brown, F atoms are blue. Atoms from the cleaved structure are superimposed using white spheres.

Figure S3: Optimized structure of the CO_3^{2-} and CeF^{2+} -terminated Ce-bastnäsite [0001] surfaces. Ce atoms are yellow, O atoms are red. C atoms are brown, F atoms are blue. Atoms from the cleaved structure are superimposed using white spheres.

Figure S4: Optimized structure of the CO_3^2 —terminated Ce-bastnäsite [10¹] and Ce-bastnäsite [11²2] surfaces. Ce atoms are yellow, O atoms are red. C atoms are brown, F atoms are blue. Atoms from the cleaved structure are superimposed using white spheres.

Figure S5: (a) Water adsorption isotherm and (b) corresponding calorimetry trace for CeFCO₃