Extra electronic outer-shell peculiarities accessible under a joint XPS and DFT study

A. R. Cholach^{1*}, I. P. Asanov^{1,3}, A. A. Bryliakova¹, A. V. Okotrub^{2,3}

¹Boreskov Institute of Catalysis, ²Nikolaev Institute of Inorganic Chemistry, ³Novosibirsk State University, Novosibirsk 630090, Russian Federation *Corresponding author: cholach@catalysis.ru

Supplementary material

Material contains the optimized coordinates of atoms, lattice constants, total (DOS) and partial (pDOS) Densities of States, and relevant views resulted from Density Functional Theory (DFT) calculations for the bilayer $C_{24}F_{12}$ (Table 1S; Figs. 1S and 1S+), $C_{24}F_{12}Br_2$ (Tables 2S-6S; Figs. 2S-6S) and C_{24} (Table 7S; Fig. 7S) unit cells with the Bernal and hexagonal (Hex) structure in terms of [20]. Table 8S gives a summary for $C_{24}F_{12}Br_2$ unit cells. Carbon planes were specified by the same C-triplets in each of $C_{24}F_{12}Br_2$ unit cells in computations the angles between C-skeleton and Br-Br axis. Atom numbering in Fig. 1S was used through each processing. The pictures have been constructed using the GiperChem 8.0.6 software.

Computational details

DFT runs have been performed by the Quantum Espresso package [16] and the non-local exchange-correlation functional in the Perdew-Burke-Ernzerhof parameterization [17]. The interactions between the ionic cores and electrons are described by the Projected Augmented Wave method [18] with a kinetic energy cutoff 40 Ry (320 Ry for the charge-density cutoff) for a plane-wave basis set. Marzari-Vanderbilt cold smearing [19] with a Gaussian spreading factor of 0.02 Ry for the Brillouin-zone integration was used.

The graphite was modeled with a bilayer C_{24} unit cell with the optimized lattice parameters ($a = 2.46 \text{ Å} \times 3$, $b = 2.46 \text{ Å} \times 2$); van der Waals interaction has been examined as in Ref. [S1]. Halffluorinated graphite, pristine and imbedded with the Br₂ molecule was modeled with a bilayer $C_{24}F_{12}$ and $C_{24}F_{12}Br_2$ unit cell, respectively, with the optimized lattice parameters $a = 2.51 \text{ Å} \times 3$ and $b = 2.46 \text{ Å} \times 2$; there were F attached to C atoms on both sides of the slab and 40 Bohr space between slabs to prevent the interactions. The Brillouin zone integration was performed on a 20 × 20 × 1 grid of Monkhorst-Pack k-points [22]. The accuracy was verified by testing the energy convergence. The excess number of bands NB = 384 and 288 accepted for C_{24} and $C_{24}F_{12}$ unit cell has resulted in the same occupied DOS structure, but the extended vacant DOS energy range as compared to the default NB = 58 and 108, respectively.

References (under the same numbering as in the text of a paper)

[20] Ch.-H. Hu, P. Zhang, H.-Y. Liu, et al. J. Phys. Chem. C 2013, 117, 3572. <u>10.1021/jp3103113</u>
[16] P. Giannozzi, S. Baroni, N. Bonini, et al. J. Phys.: Condens. Matter. 2009, 21, 395502. <u>http://dx.doi.org/10.1088/0953-8984/21/39/395502</u>

[17] J. Perdew, A. Ruzsinszky, G.I. Csonka, et al. *Phys. Rev. Lett.* **2008**, *100*, 136406. <u>http://dx.doi.org/10.1103/PhysRevLett.100.136406</u>

[18] P. E. Blochl, *Phys. Rev. B.* 1994, *50*, 17953. <u>http://dx.doi.org/10.1103/PhysRevB.50.17953</u>
[19] N. Marzari, D. Vanderbilt, A. De Vita, M. C. Payne, *Phys. Rev. Lett.* 1999, *8*, 3296. <u>http://dx.doi.org/10.1103/PhysRevLett.82.3296</u>

[22] H. J. Monkhorst, J. D. Pack, *Phys. Rev. B* **1976**, *13*, 5188. http://dx.doi.org/10.1103/PhysRevB.13.5188

[S1] S. Grimme, J. Comput. Chem. 2006, 27, 1787. 0.1002/jcc

Table 1S Optimized bilayer Bernal and hexagonal $C_{24}F_{12}$ unit cells (a) Cartesian coordinates of atoms numbered as in Fig. 1S (Å)

	Top C ₁₂	F ₆ Layer		U	Lower C ₁	₂ F ₆ Layer	
			Be	ernal			
No.	Х	Y	Ζ	No.	Х	Y	Ζ
C #1	0.01775	1.57486	3.2118	C # <u>1</u>	-1.21447	3.39593	-0.02946
C #2	1.26611	0.89618	3.21327	C # <u>2</u>	-1.23293	2.04545	-0.7502
C #3	2.52768	1.57494	3.21168	C # <u>3</u>	0.0156	1.16594	-0.74977
C #4	2.54616	2.92557	3.93217	C # <u>4</u>	-0.00283	-0.18622	-0.031
C #5	1.29766	3.80507	3.93142	C # <u>5</u>	1.27713	2.04534	-0.75007
C #6	0.03628	2.92543	3.93234	C # <u>6</u>	2.52562	1.1658	-0.74936
C #7	3.80765	3.80502	3.93163	C # <u>7</u>	2.50718	-0.18634	-0.03057
C #8	5.05616	2.92545	3.93245	C # <u>8</u>	3.78704	2.04537	-0.75009
C #9	5.03773	1.57504	3.21153	C # <u>9</u>	5.0356	1.16594	-0.74977
C #10	3.77609	0.89639	3.21261	C # <u>10</u>	5.01718	-0.18623	-0.03098
C #11	-1.2123	3.80486	3.93212	C # <u>11</u>	1.29558	3.3959	-0.02946
C #12	6.2861	0.89633	3.21283	C # <u>12</u>	3.80555	3.396	-0.02968
F #13	-1.21477	4.34486	5.22432	F # <u>13</u>	0.01814	0.62598	-2.04198
F #14	0.03926	2.38681	5.22536	F # <u>14</u>	2.52822	0.62548	-2.04143
F #15	1.29505	4.34561	5.22341	F # <u>15</u>	5.03814	0.62598	-2.04197
F #16	2.54862	2.38717	5.22525	F # <u>16</u>	-1.2355	2.58431	-2.04309
F #17	3.805	4.34545	5.22369	F # <u>17</u>	1.27481	2.58401	-2.04303
F #18	5.05845	2.38681	5.22542	F # <u>18</u>	3.78425	2.58403	-2.04307
			Hex	agonal			
C #1	-1.21401	3.56695	3.71168	C # <u>1</u>	-1.21401	3.56693	-0.36682
C #2	-1.2309	2.21551	4.43349	C # <u>2</u>	-1.23091	2.21552	-1.08862
C #3	0.01748	1.33521	4.43362	C # <u>3</u>	0.01748	1.3352	-1.08877
C #4	6.29305E-4	-0.01619	3.71171	C # <u>4</u>	6.27169E-4	-0.01617	-0.36685
C #5	1.2791	2.21549	4.43373	C # <u>5</u>	1.2791	2.2155	-1.08888
C #6	2.52751	1.3352	4.43373	C # <u>6</u>	2.52751	1.33518	-1.08888
C #7	2.51064	-0.01619	3.71183	C # <u>7</u>	2.51064	-0.01617	-0.36698
C #8	3.78913	2.21548	4.43362	C # <u>8</u>	3.78913	2.21549	-1.08877
C #9	5.03752	1.33518	4.43349	C # <u>9</u>	5.03752	1.33517	-1.08862
C #10	5.02063	-0.01626	3.71168	C # <u>10</u>	5.02063	-0.01624	-0.36682
C #11	1.29598	3.56688	3.71183	C # <u>11</u>	1.29597	3.56686	-0.36698
C #12	3.80599	3.56688	3.71171	C # <u>12</u>	3.80599	3.56686	-0.36685
F #13	0.01617	0.79537	5.72565	F # <u>13</u>	0.01615	0.79537	-2.38079
F #14	2.52633	0.79535	5.72576	F # <u>14</u>	2.52632	0.79535	-2.38091
F #15	5.0364	0.79526	5.72549	F # <u>15</u>	5.03639	0.79525	-2.38062
F #16	-1.22978	2.75543	5.72549	F # <u>16</u>	-1.22977	2.75544	-2.38062
F #17	1.28029	2.75534	5.72576	F # <u>17</u>	1.28029	2.75534	-2.38091
F #18	3.79045	2.75532	5.72565	F # <u>18</u>	3.79047	2.75532	-2.38079

(b) Structural properties: lattice parameters (a, b), interlayer distances (d_{layer}), C–C bond lengths (d_{C-C}), C–F bond length (d_{C-F}) (Å)

			Bernal	
а	b	d_{layer}	d_{C-C}	d_{C-F}
7.53	4.92	3.75; 3.98	1.42; 1.43; 1.53; 1.53; 1.53; 1.54	1.40
			Hexagonal	
7.53	4.92	4.08, 5.52	1.42, 1.42, 1.53, 1.53, 1.54, 1.54	1.40

FIG. 1S+ Total and partial DOS of the Bernal $C_{24}F_{12}$ unit cell, close to those of Hex structure; there is a preference 0.08 eV in the formation energy as compared to Hex $C_{24}F_{12}$

(a) Optimized Cartesian coordinates of atoms numbered as in Fig. 15 (A)								
Top C ₁	₂ Layer			Lower C ₁₂ Layer				
No.	Х	Y	Ζ	No.	Х	Y	Ζ	
C #1	5.01567	0.00684	4.12294	C # <u>1</u>	5.01614	0.00586	-0.77668	
C #2	5.03752	1.36	4.82889	C # <u>2</u>	5.03816	1.35938	-1.48197	
C #3	3.7898	2.23866	4.83553	C # <u>3</u>	3.79031	2.23776	-1.48916	
C #4	3.80421	3.58067	4.1129	C # <u>4</u>	3.80477	3.57974	-0.76642	
C #5	2.52874	1.36115	4.84741	C # <u>5</u>	2.52945	1.3599	-1.50069	
C #6	1.2786	2.23563	4.84808	C # <u>6</u>	1.27928	2.23452	-1.50147	
C #7	1.29924	3.58149	4.13861	C # <u>7</u>	1.29998	3.58036	-0.79158	
C #8	0.01674	1.35899	4.8357	C # <u>8</u>	0.01722	1.35821	-1.48827	
C #9	-1.23091	2.23806	4.82792	C # <u>9</u>	-1.23031	2.23752	-1.48004	
C #10	-1.20982	3.5919	4.12173	C # <u>10</u>	-1.20926	3.59117	-0.77327	
C #11	2.5072	0.01683	4.13714	C # <u>11</u>	2.50798	0.01598	-0.78934	
C #12	0.00177	0.01761	4.11248	C # <u>12</u>	0.00234	0.01679	-0.76487	
F #13	3.79263	2.78297	6.12957	F # <u>13</u>	3.79317	2.78174	-2.78332	
F #14	1.27286	2.7743	6.14508	F # <u>14</u>	1.27345	2.77286	-2.79854	
F #15	-1.23718	2.7793	6.12386	F # <u>15</u>	-1.23662	2.77952	-2.77567	
F #16	5.04447	0.82108	6.12604	F # <u>16</u>	5.04559	0.82087	-2.7793	
F #17	2.53738	0.82078	6.1442	F # <u>17</u>	2.5383	0.81848	-2.79701	
F #18	0.01347	0.81389	6.1298	F # <u>18</u>	0.01334	0.81291	-2.78225	
Br #1	3.5122	1.66995	1.6731	Br #2	0.28869	1.9726	1.67354	

Table 2S Optimized bilayer hexagonal $C_{24}F_{12}Br_2$ unit cell #1; $\alpha_{\theta} = 0^{\circ}$ (a) Optimized Cartesian coordinates of atoms numbered as in Fig. 1S (Å)

Top C ₁₂ Lay	er		Lower C_{12} L	ver C ₁₂ Layer			
C #4, 6, 10	C #3, 5, 9	C #1, 5, 12	C # <u>4, 6, 10</u>	C # <u>3, 5, 9</u>	C # <u>1, 5, 12</u>		
2.4°	0.2°	2.4°	2.4°	0.2°	2.4°		

(a) Opt	(a) Optimized Cartesian coordinates of atoms numbered as in Fig. 15 (A)							
Top C ₁₂	₂ F ₆ Layer			Lower	C ₁₂ F ₆ Layer			
No.	Х	Y	Ζ	No.	Х	Y	Ζ	
C #1	5.02893	-0.01045	5.04187	C # <u>1</u>	5.00753	-0.0328	-1.69633	
C #2	5.04379	1.34488	5.75767	C # <u>2</u>	5.01628	1.31693	-2.42001	
C #3	3.7954	2.22631	5.75548	C # <u>3</u>	3.76804	2.19853	-2.42163	
C #4	3.80421	3.57595	5.03147	C # <u>4</u>	3.78345	3.55385	-1.70663	
C #5	2.53721	1.34292	5.76871	C # <u>5</u>	2.50583	1.32226	-2.4274	
C #6	1.28591	2.21804	5.77348	C # <u>6</u>	1.25705	2.20616	-2.44064	
C #7	1.30101	3.56976	5.06322	C # <u>7</u>	1.27085	3.53297	-1.67299	
C #8	0.02478	1.3372	5.77626	C # <u>8</u>	-0.00365	1.32494	-2.43716	
C #9	-1.22399	2.22114	5.76356	C # <u>9</u>	-1.2548	2.19956	-2.43351	
C #10	-1.19839	3.57359	5.05274	C # <u>10</u>	-1.24078	3.55419	-1.72273	
C #11	2.5233	-0.01142	5.05702	C # <u>11</u>	2.47995	-0.0305	-1.71691	
C #12	0.01116	0.0103	5.00899	C # <u>12</u>	-0.01909	-0.02708	-1.72836	
F #13	3.80172	2.77525	7.04544	F # <u>13</u>	3.77122	2.73567	-3.71613	
F #14	1.28557	2.75967	7.06732	F # <u>14</u>	1.26204	2.74486	-3.72844	
F #15	-1.23079	2.76906	7.05498	F # <u>15</u>	-1.26079	2.73008	-3.73123	
F #16	5.03943	0.80738	7.0518	F # <u>16</u>	5.00896	0.76806	-3.70988	
F #17	2.54471	0.80992	7.0654	F # <u>17</u>	2.5145	0.77388	-3.71861	
F #18	0.01855	0.7987	7.06412	F # <u>18</u>	-0.00312	0.78274	-3.73096	
Br #1	0.84147	2.51396	0.7117	Br #2	0.46565	1.03463	2.6313	

Table 3S Optimized bilayer hexagonal $C_{24}F_{12}Br_2$ unit cell #2; $\alpha_{\theta} = 90^{\circ}$ (a) Optimized Cartesian coordinates of atoms numbered as in Fig. 1S (Å)

Top C_{12} Lay	er		Lower C_{12} L	Layer			
C #4, 6, 10	C #3, 5, 9	C #1, 5, 12	C # <u>4, 6, 10</u>	C # <u>3, 5, 9</u>	C # <u>1, 5, 12</u>		
23.7°	50.8°	78.0°	77.3°	51.7°	24.2°		

FIG. 3S Relevant views of the hexagonal $C_{24}F_{12}Br_2$ unit cell #2

(a) Opti	(a) Optimized Cartesian coordinates of atoms numbered as in Fig. 15 (A)							
Top $C_{12}I$	F ₆ Layer			Lower C	C ₁₂ F ₆ Layer			
No.	Х	Y	Ζ	No.	Х	Y	Ζ	
C #1	0.0827	1.39277	4.9707	C # <u>1</u>	-1.30555	3.32322	-1.69635	
C #2	1.32988	0.71346	4.97347	C # <u>2</u>	-1.32225	1.9722	-2.41741	
C #3	2.59193	1.39131	4.96803	C # <u>3</u>	-0.07359	1.09179	-2.41616	
C #4	2.61015	2.74472	5.68395	C # <u>4</u>	-0.09063	-0.26053	-1.69777	
C #5	1.36212	3.62419	5.68661	C # <u>5</u>	1.18794	1.97005	-2.416	
C #6	0.10104	2.74477	5.68867	C # <u>6</u>	2.43682	1.0905	-2.4158	
C #7	3.87107	3.62361	5.68478	C # <u>7</u>	2.4198	-0.26026	-1.69725	
C #8	5.11987	2.74479	5.68791	C # <u>8</u>	3.69692	1.97044	-2.41646	
C #9	5.1012	1.39414	4.97097	C #9	4.94686	1.09285	-2.41958	
C #10	3.83994	0.715	4.96869	C # <u>10</u>	4.92978	-0.25931	-1.70427	
C #11	-1.14819	3.6232	5.69033	C # <u>11</u>	1.20497	3.32379	-1.70022	
C #12	6.34841	0.71581	4.97132	C # <u>12</u>	3.71394	3.32373	-1.70157	
F #13	-1.1496	4.16165	6.98408	F # <u>13</u>	-0.07243	0.55183	-3.70878	
F #14	0.10515	2.20459	6.98147	F # <u>14</u>	2.43931	0.54914	-3.70855	
F #15	1.36133	4.16491	6.97974	F # <u>15</u>	4.94836	0.55563	-3.71383	
F #16	2.61302	2.20491	6.97722	F # <u>16</u>	-1.32235	2.51518	-3.70883	
F #17	3.86781	4.16579	6.97696	F # <u>17</u>	1.18685	2.50886	-3.70912	
F #18	5.12096	2.20738	6.98239	F # <u>18</u>	3.6941	2.51232	-3.70873	
Br #1	1.80501	2.37914	1.70353	Br #2	3.79739	3.64548	1.95866	

Table 4S Optimized bilayer Bernal $C_{24}F_{12}Br_2$ unit cell #3; $\alpha_0 = 0^{\circ}$ (a) Optimized Cartesian coordinates of atoms numbered as in Fig. 1S (Å)

Top C ₁₂ Lay	er		Lower C ₁₂ Layer			
C #2, 3, 12	C #1, 4, 9	C #5, 6, 8	C # <u>4, 6, 10</u>	C # <u>3, 5, 9</u>	# <u>1, 5, 12</u>	
6.4°	8.9°	6.2°	20.2°	6.2°	8.9°	

FIG. 4S Relevant views of the Bernal $C_{24}F_{12}Br_2$ unit cell #3

(a) Opt	(a) Optimized Cartesian coordinates of atoms numbered as in Fig. 15 (A)							
Top La	yer Nos. 1-12			Lower La	yer Nos. 1-12	2		
No.	Х	Y	Ζ	No.	Х	Y	Ζ	
C #1	0.17566	1.83587	3.9331	C # <u>1</u>	-1.23931	3.27862	-1.04744	
C #2	1.45365	1.05036	4.14863	C # <u>2</u>	-1.25455	1.92679	-1.76644	
C #3	2.64758	1.7314	4.2524	C # <u>3</u>	-0.00508	1.04713	-1.76623	
C #4	2.68217	3.09304	4.9438	C # <u>4</u>	-0.01995	-0.30483	-1.04701	
C #5	1.42569	3.94489	4.94354	C # <u>5</u>	1.2552	1.92731	-1.76621	
C #6	0.15943	3.04701	4.90897	C # <u>6</u>	2.5048	1.04791	-1.76658	
C #7	3.94873	3.99166	4.9148	C # <u>7</u>	2.48849	-0.30312	-1.04636	
C #8	5.18579	3.07351	4.8992	C # <u>8</u>	3.7656	1.92689	-1.76623	
C #9	5.11509	1.7283	4.15349	C #9	5.01507	1.04706	-1.76504	
C #10	3.9214	1.04671	4.25447	C # <u>10</u>	4.99932	-0.3047	-1.04409	
C #11	-1.07712	3.96554	4.89537	C # <u>11</u>	1.27125	3.2784	-1.04387	
C #12	6.39289	0.9421	3.93718	C # <u>12</u>	3.78133	3.27667	-1.04436	
F #13	-1.09218	4.48801	6.19411	F # <u>13</u>	-0.00505	0.50633	-3.05896	
F #14	0.151	2.45085	6.14766	F # <u>14</u>	2.50565	0.50735	-3.05884	
F #15	1.38105	4.46068	6.24464	F # <u>15</u>	5.01424	0.50479	-3.05653	
F #16	2.72436	2.57472	6.24385	F # <u>16</u>	-1.25531	2.46515	-3.06002	
F #17	3.95471	4.58258	6.15546	F # <u>17</u>	1.25525	2.46802	-3.0583	
F #18	5.20373	2.55307	6.1989	F # <u>18</u>	3.76617	2.46781	-3.05838	
Br #1	-1.24157	-0.00181	2.16056	Br #2	0.28781	2.78119	2.15228	

Table 5S Optimized bilayer Bernal $C_{24}F_{12}Br_2$ unit cell #4; $\alpha_0 = 90^{\circ}$ (a) Optimized Cartesian coordinates of atoms numbered as in Fig. 1S (Å)

Top C ₁₂ Lay	er		Lower C_{12} L	r C ₁₂ Layer			
C #2, 3, 12	C #1, 4, 9	C #5, 6, 8	C # <u>4, 6, 10</u>	C # <u>3, 5, 9</u>	# <u>1, 5, 12</u>		
9.9°	31.4°	2.2°	24.2°	0.1°	24.5°		

FIG. 5S Relevant views of the Bernal $C_{24}F_{12}Br_2$ unit cell #4

(a) Opt	(a) Optimized Cartesian coordinates of atoms numbered as in Fig. 15 (A)							
Top C ₁₂	₂ F ₆ Layer			Lower C	12F6 Layer			
No.	Х	Y	Ζ	No.	Х	Y	Ζ	
C #1	0.07857	1.35946	4.24895	C # <u>1</u>	-1.23307	3.59509	-1.04998	
C #2	1.32901	0.68114	4.25326	C # <u>2</u>	-1.28426	2.2493	-1.76944	
C #3	2.58793	1.35914	4.25178	C # <u>3</u>	-0.03833	1.36315	-1.7338	
C #4	2.60743	2.7101	4.97423	C # <u>4</u>	-0.0639	0.0811	-0.86513	
C #5	1.35856	3.59003	4.97594	C # <u>5</u>	1.2213	2.24282	-1.71441	
C #6	0.097	2.71008	4.97291	C # <u>6</u>	2.46633	1.36011	-1.76111	
C #7	3.86824	3.59097	4.97404	C # <u>7</u>	2.41499	0.01125	-1.04736	
C #8	5.11689	2.71106	4.97569	C # <u>8</u>	3.73081	2.24706	-1.76698	
C #9	5.09758	1.35933	4.25626	C #9	4.98289	1.36049	-1.76941	
C #10	3.83757	0.68027	4.2524	C # <u>10</u>	4.99995	0.0157	-1.05734	
C #11	-1.151	3.59035	4.97394	C # <u>11</u>	1.24676	3.53665	-0.85015	
C #12	6.34534	0.6812	4.25176	C # <u>12</u>	3.71578	3.59121	-1.05545	
F #13	-1.15268	4.13131	6.26617	F # <u>13</u>	-0.01531	0.77698	-2.98786	
F #14	0.09949	2.16686	6.26382	F # <u>14</u>	2.46435	0.85407	-3.06699	
F #15	1.35447	4.12808	6.26859	F # <u>15</u>	4.96536	0.82435	-3.06716	
F #16	2.61266	2.17009	6.26668	F # <u>16</u>	-1.28975	2.76003	-3.07344	
F #17	3.8661	4.13427	6.26511	F # <u>17</u>	1.20505	2.85163	-2.96026	
F #18	5.12104	2.17475	6.27024	F # <u>18</u>	3.74688	2.77922	-3.0667	
Br #1	-0.11852	0.40013	1.14058	Br #2	1.31456	3.4143	1.18964	

Table 6S Optimized bilayer Bernal $C_{24}F_{12}Br_2$ **unit cell #5;** $\alpha_{\theta} = 52^{\circ}$ (a) Optimized Cartesian coordinates of atoms numbered as in Fig. 1S (Å)

Top C ₁₂ Lay	er		Lower C_{12} L	ayer			
C #2, 3, 12	C #1, 4, 9	C #5, 6, 8	C # <u>4, 6, 10</u>	C # <u>3, 5, 9</u>	# <u>1, 5, 12</u>		
0.9°	24.4°	0.7°	29.9°	0.7°	22.6°		

FIG. 6S Relevant views of the Bernal $C_{24}F_{12}Br_2$ unit cell #5

Table 7S Optimized bilayer Bernal and hexagonal C24 unit cells(a) Lattice parameters (a, b), interlayer space (d_{layer}) and C-C (d_{C-C}) bond length (Å)

a	b	d_{layer}	d_{C-C}
7.38	4.92	3.96	1.42

|--|

Top C ₁₂ Layer				Lower C ₁₂ Layer					
Bernal									
No.	Х	Y	Ζ	No.	Х	Y	Ζ		
C #1	9.65796E-5	1.59046	3.57131	C # <u>1</u>	-1.23016	3.38041	-0.38863		
C #2	1.22977	0.88037	3.5708	C # <u>2</u>	-1.23	1.9601	-0.38858		
C #3	2.4601	1.59045	3.57114	C # <u>3</u>	2.706E-5	1.24994	-0.38803		
C #4	2.45995	3.01075	3.57092	C # <u>4</u>	1.74901E-4	-0.17035	-0.3882		
C #5	1.22992	3.72091	3.57045	C # <u>5</u>	1.22999	1.96011	-0.38842		
C #6	-5.89441E-5	3.01076	3.57114	C # <u>6</u>	2.46002	1.24995	-0.3879		
C #7	3.68992	3.72091	3.5705	C # <u>7</u>	2.46017	-0.17034	-0.38802		
C #8	4.91995	3.01076	3.57112	C # <u>8</u>	3.69	1.9601	-0.3885		
C #9	4.9201	1.59045	3.57111	C # <u>9</u>	4.92003	1.24994	-0.38807		
C #10	3.68978	0.88036	3.57053	C # <u>10</u>	4.92018	-0.17035	-0.38817		
C #11	-1.23009	3.72092	3.57071	C # <u>11</u>	1.22984	3.38041	-0.38856		
C #12	6.14977	0.88037	3.57068	C # <u>12</u>	3.68985	3.3804	-0.38872		
	Hexagonal								
C #1	-1.23016	3.38041	3.5708	C # <u>1</u>	-1.23016	3.38041	-0.38863		
C #2	-1.23	1.9601	3.5708	C # <u>2</u>	-1.23	1.9601	-0.38858		
C #3	2.706E-5	1.24994	3.5708	C # <u>3</u>	2.706E-5	1.24994	-0.38803		
C #4	1.74901E-4	-0.17035	3.5708	C # <u>4</u>	1.74901E-4	-0.17035	-0.3882		
C #5	1.22999	1.96011	3.5708	C # <u>5</u>	1.22999	1.96011	-0.38842		
C #6	2.46002	1.24995	3.5708	C # <u>6</u>	2.46002	1.24995	-0.3879		
C #7	2.46017	-0.17034	3.5708	C # <u>7</u>	2.46017	-0.17034	-0.38802		
C #8	3.69	1.9601	3.5708	C # <u>8</u>	3.69	1.9601	-0.3885		
C #9	4.92003	1.24994	3.5708	C # <u>9</u>	4.92003	1.24994	-0.38807		
C #10	4.92018	-0.17035	3.5708	C # <u>10</u>	4.92018	-0.17035	-0.38817		
C #11	1.22984	3.38041	3.5708	C # <u>11</u>	1.22984	3.38041	-0.38856		
C #12	3.68985	3.3804	3.5708	C # <u>12</u>	3.68985	3.3804	-0.38872		

FIG. 7S (a) Relevant views of the bilayer Bernal and Hex C_{24} Unit Cell; (b) Partial DOS of the Bernal C_{24} unit cell, close to those of hexagonal structure ($p_x = p_y$); (c) Partial DOS affected by the van der Waals (VdW) interaction in Hex C_{24} unit cell ($p_x = p_y$).

Table 8S Optimized bilayer C24F12Br2 unit cells: Summary

Total *E* and relative ΔE formation energy; enthalpy ΔH of reaction $C_{24}F_{12} + Br_2 \rightarrow C_{24}F_{12}Br_2$; interlayer distance (d_{layer}) ; C-C (d_{C-C}) , C-F (d_{C-F}) , and Br-Br (d_{Br-Br}) bond length/distance at lattice parameters a = 2.51 Å $\times 3$, b = 2.46 Å $\times 2$ and angles between Br-Br axis and skeleton C planes before (α_0) and after (α) optimization

<i>E</i> per Unit	ΔE per	<i>∆H</i> per Unit	d_{layer} (Å)	$d_{C-C}(\text{\AA})$	$d_{C-F}(\text{\AA})$	$d_{Br-Br}(\mathrm{\AA})$		
Cell (Ry)	$C_2F(eV)$	Cell (eV)	-					
Hexagonal C ₂₄ F ₁₂ Br ₂ unit cell #1; $\alpha_0 = 0^{\circ}$; $\alpha = 0.2-2.4^{\circ}$								
-1540.50463	0	+0.25456	4.88, 6.32	1.43, 1.43,	1.40	3.24, 4.92*		
				1.52, 1.53,				
				1.53, 1.54				
Hexagonal C ₂₄ F ₁₂ Br ₂ unit cell #2; $\alpha_0 = 90^{\circ}$; $\alpha = 23.7-78.0^{\circ}$								
-1540.56292	0.0661	-0.53851	6.74, 8.21	1.43, 1.45,	1.40	2.45, 4.92*		
				1.53, 1.53,				
				1.53, 1.54				
Bernal C ₂₄ F ₁₂ Br ₂ unit cell #3; $\alpha_0 = 0^\circ$; $\alpha = 6.2-20.2^\circ$								
-1540. 52977	0.0285	-0.00884	7.38, 7.39	1.42, 1.43,	1.40	2.37, 4.92*		
				1.53, 1.53,				
				1.53, 1.54				
Bernal C ₂₄ F ₁₂ Br ₂ unit cell #4; $\alpha_0 = 90^\circ$; $\alpha = 0.1-31.4^\circ$								
-1540. 59827	0.1061	-0.94083	5.70, 5.98,	1.33, 1.42,	1.37	3.18, 4.25*,		
			6.02	1.44, 1.53,	1.40	4.92*		
				1.54, 1.55				
Bernal C ₂₄ F ₁₂ Br ₂ unit cell #5; $\alpha_0 = 52^\circ$; $\alpha = 0.7-29.9^\circ$								
-1540.55885	0.0615	-0.40450	5.11, 5.82,	1.36, 1.42,	1.38	3.34, 4.09*,		
			6.74	1.43, 1.45,	1.39	4.92*		
				1.50, 1.52,	1.40			
				1.53, 1.54				

*For Br atoms in X-Y adjacent cells