Electronic Supplementary Information

Infrared spectra of HSCS⁺, *c*-HSCS, and HCS₂⁻ produced on electron-bombardment of CS₂ in solid *para*-hydrogen

Masashi Tsuge*a and Yuan-Pern Lee*ab

^aDepartment of Applied Chemistry and Institute of Molecular Sciences, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan, E-mail: (MT) <u>tsuge@nctu.edu.tw</u> (YPL) <u>yplee@mail.nctu.edu.tw</u>, Tel: +886-3-5131459

^b Institute of Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan

Electron bombardment of ¹³CS₂/p-H₂ matrices

The line of ${}^{13}CS_2^-$ was observed at 1123.3 cm⁻¹, consistent with the value 1122.2 cm⁻¹ reported for ${}^{13}CS_2^-$ in a Ne matrix (Table S7).¹ The line of ${}^{13}CS$ was observed at 1236.6 cm⁻¹, consistent with values reported for ${}^{13}CS$ in *p*-H₂ (1236.4 cm⁻¹)² and Ar (1239.5 cm⁻¹) matrices.³ A line observed at 2160.0 cm⁻¹ is tentatively assigned to H¹³C(S)SH⁻.

Lines of *t*-HS¹³CS were observed at 2530.5, 1251.8, 1202.9, 940.4, and 622.9 cm⁻¹, consistent with values 2527.5, 1247.1, 1201.0, 938.9, and 618.3 cm⁻¹ reported for *t*-HS¹³CS in an Ar matrix;⁴ Lines of *c*-HS¹³CS were observed at 2312.2 and 875.5 cm⁻¹ (Table S4).

Weak lines of *t*-H¹³C(S)SH were observed at 1276.0, 1035.9, 926.4, 820.1, and 673.9 cm⁻¹, consistent with values 1280, 1037.5, 925.1, and 828 cm⁻¹ reported for *t*-H¹³C(S)SH in an Ar matrix.⁴ Lines of *c*-H¹³C(S)SH were observed at 1061.4 and 919.6 cm⁻¹, consistent with values 1062.7 and 918.2 cm⁻¹ reported for *c*-H¹³C(S)SH in an Ar matrix;⁴ the line of v₃ is likely overlapped with the intense line at 1251.8 cm⁻¹ of *t*-HS¹³CS; the line of v₆ corresponding to one observed in an Ar matrix at 799.0 cm⁻¹ was unobserved because of its small intensity. These lines are listed in Table S6.

Electron bombardment of C³⁴S₂/p-H₂ matrices

The line of $C^{34}S_2^{-}$ was observed at 1157.4 cm⁻¹, consistent with the value 1153.5 cm⁻¹ reported for $C^{34}S_2^{-}$ in a Ne matrix (Table S7).¹ The line of $C^{34}S$ was observed at 1262.5 cm⁻¹, consistent with values reported for $C^{34}S$ in *p*-H₂ (1262.1 cm⁻¹)² and Ar (1264.9 cm⁻¹) matrices.³ A line observed at 2159.0

ESI-1

cm⁻¹, with which an intense line of $C^{34}S_2$ (v₁ + v₃) interfered, is tentatively assigned to HC(³⁴S)³⁴SH⁻.

Lines of t-H³⁴SC³⁴S were observed at 2527.7, 1265.5, 1216.4, 940.7, and 621.6 cm⁻¹, consistent with values 2527.7, 1264.1, 1211.2, 939.2, and 617.1 cm⁻¹ reported for t-H³⁴SC³⁴S in an Ar matrix;⁴ lines of c-H³⁴SC³⁴S were observed at 2310.8 and 883.9 cm⁻¹ (Table S4).

Weak lines of *t*-HC(³⁴S)³⁴SH were observed at 1285.9, 1050.0, 933.7, 828.1, and 676.6 cm⁻¹, consistent with values 1289.1, 1052.1, 932.5, 835, and 674.8 cm⁻¹ reported for *t*-HC(³⁴S)³⁴SH in an Ar matrix.⁴ Lines of *c*-HC(³⁴S)³⁴SH were observed at 1074.6 and 922.2 cm⁻¹; the latter is tentatively assigned because of overlap. Observed wavenumbers are consistent with values 1076.4 and 921.4 cm⁻¹ reported for *c*-HC(³⁴S)³⁴SH in an Ar matrix.⁴ The v₃ mode of *c*-HC(³⁴S)³⁴SH is unidentified because of interference from C³⁴S. These lines are listed in Table S6.

Discussion on [H₂, C, S₂] isomers, HC(S)SH⁻, and CS₂⁻

[H₂, C, S₂] isomers. The IR absorption lines of *t*-HC(S)SH at 1287.3, 1056.9, 934.6, 828.5, and 685.3 cm⁻¹ in a CS₂/*p*-H₂ matrix and *c*-HC(S)SH at 1262.4, 1080.1, and 926.5 cm⁻¹, with those of their ¹³C- and ³⁴S-isotopic variants, were confidently assigned on comparison with those reported for these species in an Ar matrix⁴ and the predicted spectra and isotopic ratios, as listed in Table S6. The D-isotopic variants of these species were unidentified in the CS₂/*n*-D₂ experiment because D atoms have limited mobility in solid *n*-D₂.

Dithiohydroxy carbene HSCSH, another stable isomer of $[H_2, C, S_2]$, has been studied both computationally and experimentally with a neutralization–reionization mass spectrometer.^{5,6} According to the QCISD(T)/6-311++G(d,p) calculations by Nguyen *et al.*, the formation of HSCSH from HSCS + H is barrierless and exothermic by 200 kJ mol⁻¹, but the energy of HSCSH is greater than its acid isomers *t*-HC(S)SH and *c*-HC(S)SH by 160 kJ mol⁻¹. Furthermore, the energy of the transition state for the carbene–acid isomerization HSCSH \rightarrow HC(S)SH is smaller than for HSCS + H by 73 kJ mol⁻¹, indicating that a reaction HSCS + H might result in the formation of acids *t*-HC(S)SH and *c*-HC(S)SH in solid *p*-H₂. The geometry of HSCSH was optimized; we calculated the harmonic and anharmonic IR spectra at the B3LYP/aug-cc-pVTZ level, as listed in Table S11. Anharmonic vibrational wavenumbers with IR intensities greater than 20 km mol⁻¹ follow: 2160 (SH stretch, v₇), 2145 (SH stretch, v₁), 1020 (SCS antisymmetric stretch, v₈), and 944 cm⁻¹ (SH bend, v₂). Among these modes, v₁ and v₈ have significant IR intensities, 165 and 91 km mol⁻¹, respectively, indicating that one might expect to observe a pair of lines, which show correlated variations at each step of the experiment, in the regions near 2150 and 1020 cm⁻¹. Although some lines are unassigned in these regions, none showed correlated variations; we hence exclude the possibility that HSCSH was produced in the present experiments.

HC(S)SH⁻. The line observed at 2161.0 cm⁻¹ in a $CS_2/p-H_2$ matrix is tentatively assigned to the SH-ESI-2

stretching (v_2) mode of HC(S)SH⁻. The corresponding lines were observed at 2160.0 and 2159.0 cm⁻¹ in $^{13}CS_2/p-H_2$ and $C^{34}S_2/p-H_2$ experiments, respectively. The observed wavenumber of the line near 2160 cm⁻¹ and negligible isotopic shifts upon ¹³C- and ³⁴S-substitution indicate that the absorption originates from an SH-stretching mode. The corresponding absorption around 2160 cm⁻¹ was unidentified in a $CS_2/n-D_2$ matrix (see Fig. 6), confirming its assignment as an SH-stretching mode. We compared the observed line position (2161 cm⁻¹) with predicted spectra of SH⁻ (2495 cm⁻¹, 79 km mol⁻¹), SH⁻···CS complex (2411 cm⁻¹, 41 km mol⁻¹), t-HSCS⁻ (2439 cm⁻¹, 40 km mol⁻¹), c-HSCS⁻ (1969 cm⁻¹, 355 km mol⁻¹), HSC⁺ (2157 cm⁻¹, 184 km mol⁻¹), HSCH⁺ (3062 cm⁻¹, 106 km mol⁻¹), and HC(S)SH⁻ (2144 cm⁻¹, 540 km mol⁻¹), of which predicted anharmonic wavenumbers and IR intensities of SH-stretching modes are shown in parentheses. The predicted anharmonic wavenumber of the SH-stretching mode of HSC⁺ (2157 cm⁻¹) agrees with the observed wavenumber (2161.0 cm⁻¹); however, the SH-stretching mode of HSC⁺ might be significantly red-shifted in solid p-H₂ due to proton sharing with p-H₂ host and, furthermore, the line of the CS-stretching mode is predicted to have a considerable IR intensity (1076 cm⁻¹, 133 km mol⁻¹) but features showing correlated changes with the 2161.0 cm⁻¹ line were unobserved. Hence, we excluded the possibility that HCS⁺ was produced in the present experiment. We found that only the predicted spectrum of HC(S)SH⁻ matches with observation; the predicted anharmonic wavenumber of the SH-stretching (v_2) mode agrees with the observed wavenumber and IR intensities of other modes are only a tenth or less, as listed in Table S10. The observation of only one line is thus consistent with the predictions, but observation of other lines is required to provide a definitive assignment.

CS₂⁻. Although only one line (v₃ at 1163.0 cm⁻¹ in a CS₂/*p*-H₂ matrix) was observed, this line was confidently assigned to CS₂⁻ according to the expected chemistry, the agreement with values reported for CS₂⁻ in Ar and Ne matrices,^{1,7} and a comparison of observed and quantum-chemically predicted ¹³C- and ³⁴S-isotopic ratios; values are summarized in Table S7. In the electron-bombarded CS₂/*p*-H₂ matrix (Fig. 3), the mixing ratio of CS₂⁻ after deposition for 7 h was estimated to be 0.67 ppm; the mixing ratio decreased during maintenance of the matrix in darkness (-0.12 ppm) and during irradiation at 373 nm (-0.42 ppm). These decreases can be related to the production of HCS₂⁻, as discussed previously. An increase (+0.11 ppm) was observed after irradiation at 254 nm, which might be due to photolysis of HCS₂⁻. The yield of CS₂⁻ was significant (2.7 ppm) in the electron-bombarded CS₂/*n*-D₂ matrix (Fig. 6), because more electrons were trapped in solid *n*-D₂, but we are unable to identify the v₁ line with a predicted anharmonic wavenumber at 618 cm⁻¹ and IR intensity of 21 km mol⁻¹; the IR intensity of the v₁ line is much smaller than that (561 km mol⁻¹) of the most intense v₃ line.

References

- 1 M. Zhou and L. Andrews, *J. Chem. Phys.*, 2000, **112**, 6576-6582.
- 2 C.-W. Huang, Y.-C. Lee and Y.-P. Lee, J. Chem. Phys., 2010, **132**, 164303.
- 3 R. B. Bohn, Y. Hannachi and L. Andrews, *J. Am. Chem. Soc.*, 1992, **114**, 6452-6459.
- 4 R. B. Bohn, G. D. Brabson and L. Andrews, *J. Phys. Chem.*, 1992, **96**, 1582-1589.
- 5 M. T. Nguyen, T. L. Nguyen and H. T. Le, J. Phys. Chem. A, 1999, **103**, 5758-5765.
- 6 S. Vivekananda, R. Srinivas, M. Manoharan and E. D. Jemmis, *J. Phys. Chem. A*, 1999, **103**, 5123-5128.
- 7 T. M. Halasinski, J. T. Godbout, J. Allison and G. E. Leroi, *J. Phys. Chem.*, 1996, **100**, 14865-14871.

Tables and Figures in the ESI

Vibrational wavenumbers and IR intensities predicted for HSCS⁺, H₂–HSCS⁺, HCS₂⁺, and H₂–HCS₂⁺ are compared in Table S1. Vibrational wavenumbers and IR intensities of HSCS⁺, HCS₂⁺, and their ¹³C-, ³⁴S-, and D-isotopic variants are shown in Table S2; those of H₂–HSCS⁺ and H₂–HCS₂⁺ complexes and their isotopic variants are shown in Table S3. Vibrational wavenumbers and IR intensities of *t*-HSCS, *c*-HSCS, and HCS₂ isomers and their ¹³C-, ³⁴S-, and D-isotopic variants are shown in Table S4. Relative energies of minima and transition states in the potential energy diagram of the H + CS₂ system are shown in Table S5. Vibrational wavenumbers and IR intensities of *t*-HC(S)SH, *c*-HC(S)SH, and their ¹³C-, ³⁴S-, and D-isotopic variants are shown in Table S6. Vibrational wavenumbers and IR intensities of CS₂⁻, ¹³CS₂⁻, and C³⁴S₂⁻ are shown in Table S7. Vibrational wavenumbers and IR intensities of HCS₂⁻, H¹³CS₂⁻, HC³⁴S₂⁻, and DCS₂⁻ are shown in Table S8. Vibrational wavenumbers and IR intensities of *t*-HSCS⁻, *c*-HSCS⁻, and their ¹³C-, ³⁴S-, and D-isotopic variants are shown in Table S8. Vibrational wavenumbers and IR intensities of *t*-HSCS₂⁻, *t*-HSCS⁻, and their ¹³C-, ³⁴S-, and D-isotopic variants are shown in Table S8. Vibrational wavenumbers and IR intensities of *t*-HSCS⁻, *c*-HSCS⁻, and their ¹³C-, ³⁴S-, and D-isotopic variants are shown in Table S9. Vibrational wavenumbers and IR intensities of *t*-HSCS⁻, *c*-HSCS⁻, and their ¹³C-, ³⁴S-, and D-isotopic variants are shown in Table S9. Vibrational wavenumbers and IR intensities of *t*-HSCS⁻, *c*-HSCS⁻, and their ¹³C-, ³⁴S-, and D-isotopic variants are shown in Table S9. Vibrational wavenumbers and IR intensities of HC(S)SH⁻ and its ¹³C-, ³⁴S-, and D-isotopic variants are shown in Table S10. Vibrational wavenumbers and IR intensities of HC(S)SH⁻ and its ¹³C-, ³⁴S-, and D-isotopic variants are shown in Table S11.

Geometries of *t*-HSCS, *c*-HSCS, and HCS₂ are shown in Fig. S1. Potential energy diagram of the H + HSCS reaction is shown in FIG. S2. Geometries of HCS_2^- , *t*-HSCS⁻, and *c*-HSCS⁻ are shown in Fig. S3. Potential energy diagram of the H + CS_2^- is shown in Fig. S4. Partial infrared spectra of experiments with electron bombardment of CS_2/p -H₂ in the region 3300–2600 cm⁻¹ are shown in Fig. S5. The observed spectrum is compared with spectra predicted for *t*-HSCS, *c*-HSCS, and HCS₂ in Fig. S6.

			Experiment	B3LYP/aug	g-cc-pVTZ	CCSD(T)/aug-cc-pVTZ	CCSD(T)/cc	z-pwVQZ ^a
Molecule	Mode (sym.) ^b	Description	<i>p</i> -Н ₂	Harmonic	Anharmonic	Harmonic	Harmonic	Anharmonic
HSCS ⁺	$v_1(A')$	SH stretch	2477.2 (31) ^c	2573	2424	2610	2627 (553) ^e	2517
	. ,			$(82)^{d}$	$(81)^{d}$			
	$v_2(A')$	SCS asym stretch	1525.6	1562	1541	1535	1558 (342)	1537
			(100)	(290)	(257)			
	$v_3(A')$	HSC bend	919.6 (2)	935 (16)	913 (15)	938	945 (756)	924
	$v_4(A')$	SCS sym stretch		611 (2.7)	593 (2.4)	596	609 (43)	577
	$\nu_5(A')$	ip bend		322 (4.8)	328 (5.0)	307	316 (65)	320
	$\nu_6(A'')$	oop bend		374 (5.9)	381 (6.0)	361	372 (4)	377
H ₂ -HSCS ⁺	$v_1(A')$	SH stretch		2458	2330			
				(418)	(296)			
	$v_2(A')$	SCS asym stretch		1560	1535			
				(327)	(229)			
	$v_3(A')$	HSC bend		955 (22)	916 (26)			
	$\nu_4(A')$	SCS sym stretch		614 (3.4)	599 (3.0)			
	$\nu_5(A')$	ip bend		333 (4.2)	326 (4.3)			
	$\nu_6(A'')$	oop bend		375 (7.1)	369 (5.3)			
HCS_2^+	$\mathbf{v}_1\left(A_1\right)$	CH stretch		3199 (70)	3058 (68)	3217		
	$\nu_2(A_1)$	SCS sym stretch		1050	1031	1039		
				(9.3)	(9.6)			
	$v_3(A_1)$	SCS bend		420 (0.8)	416 (0.9)	389		
	$v_4 (B_1)$	oop CH bend		857 (26)	849 (26)	838		
	$v_5(B_2)$	HCS bend		1088	1068	1079		
				(0.1)	(0.0)			
	$\nu_6(B_2)$	SCS asym stretch		759 (93)	740 (92)	759		
H ₂ -HCS ₂ ⁺	$\mathbf{v}_1\left(A_1\right)$	CH stretch		3157	3026			
				(193)	(146)			
	$v_2(A_1)$	SCS sym stretch		1048 (18)	1028 (15)			
	$v_3(A_1)$	SCS bend		421 (1.8)	416 (1.8)			
	$v_4 (B_1)$	oop CH bend		886 (19)	840 (25)			
	$v_5(B_2)$	HCS bend		1103	1076			
				(0.3)	(0.1)			
	$v_6(B_2)$	SCS asym stretch		759 (88)	739 (85)			

Table S1 Comparison of vibrational wavenumbers (in cm^{-1}) and IR intensities of HSCS⁺, H₂–HSCS⁺, HCS₂⁺, and H₂–HCS₂⁺ between experiments and quantum-chemical calculations

^{*a*} B. J. McIntosh, N. G. Adams and D. Smith, *Chem. Phys. Lett.* 1988, **148**, 142–148. ^{*b*} Mode numbers of H₂-HSCS⁺ and H₂-HCS₂⁺ follow those of HSCS⁺ and HCS₂⁺, respectively. Complete lists for H₂–HSCS⁺ and H₂–HCS₂⁺ are found in Table S3. ^{*c*} Relative integrated intensities are shown in parentheses. ^{*d*} Infrared intensities (in km mol⁻¹) are shown in parentheses. ^{*e*} Infrared intensities (in km mol⁻¹) calculated with the CCSD(T)(fc)/cc-pVTZ method are shown in parentheses.

			Experiment	B3LYP/a	ug-cc-pVTZ	CCSD(T)/	cc-pwVQZ ^a
Molecule	Mode (sym.)	Description	$p-\mathrm{H}_2$	Harmonic	Anharmonic	Harmonic	Anharmonic
HSCS ⁺	$v_1(A')$	SH stretch	2477.2 (31) ^b	2573 (82) ^c	2424 (81) ^c	2627 (553) ^d	2517
	$v_2(A')$	SCS asym stretch	1525.6 (100)	1562 (290)	1541 (257)	1558 (342)	1537
	$v_3(A')$	HSC bend	919.6 (2)	935 (16)	913 (15)	945 (756)	924
	$v_4(A')$	SCS sym stretch		611 (2.7)	593 (2.4)	609 (43)	577
	$v_5(A')$	ip bend		322 (4.8)	328 (5.0)	316 (65)	320
	$v_6(A'')$	oop bend		374 (5.9)	381 (6.0)	372 (4)	377
$HS^{13}CS^+$	$v_1(A')$	SH stretch	2476.9 (37)	2572 (82)	2424 (82)		
	$v_2(A')$	S ¹³ CS asym stretch	1476.1 (100)	1512 (267)	1489 (251)		
	$v_3(A')$	HS ¹³ C bend	915.2 (3)	931 (16)	911 (13)		
	$v_4(A')$	S ¹³ CS sym stretch		611 (2.8)	591 (2.4)		
	$v_5(A')$	ip bend		312 (4.7)	320 (4.9)		
	$v_6(A'')$	oop bend		362 (6.2)	369 (6.3)		
$\mathrm{H}^{34}\mathrm{SC}^{34}\mathrm{S}^{+}$	$v_1(A')$	³⁴ SH stretch	2475.0 (38)	2570 (82)	2422 (82)		
	$v_2(A')$	³⁴ SC ³⁴ S asym stretch	1517.5 (100)	1554 (290)	1531 (271)		
	$v_3(A')$	H ³⁴ SC bend	918.4 (2)	933 (16)	913 (15)		
	$v_4(A')$	³⁴ SC ³⁴ S sym stretch		594 (2.5)	578 (2.2)		
	$v_5(A')$	ip bend		320 (4.6)	327 (4.8)		
	$v_6(A'')$	oop bend		372 (5.6)	379 (5.7)		
DSCS ⁺	$v_1(A')$	SD stretch	1802.0 (20)	1848 (33)	1772 (32)		
	$v_2(A')$	SCS asym stretch	1524.4 (100)	1561 (296)	1538 (285)		
	$v_3(A')$	DSC bend	711.9 (4)	722 (11)	710 (9.5)		
	$v_4(A')$	SCS sym stretch		601 (2.7)	579 (2.3)		
	$v_5(A')$	ip bend		304 (3.4)	306 (3.5)		
	$v_6(A'')$	oop bend		372 (3.9)	375 (3.9)		
HCS_{2}^{+}	$v_1(A_1)$	CH stretch		3199 (70)	3058 (68)		
	$v_2(A_1)$	SCS sym stretch		1050 (9.3)	1031 (9.6)		
	$v_3(A_1)$	SCS bend		420 (0.8)	416 (0.9)		
	$v_4 (B_1)$	oop CH bend		857 (26)	849 (26)		
	$v_5(B_2)$	HCS bend		1088 (0.1)	1068 (0.0)		
	$v_6(B_2)$	SCS asym stretch		759 (93)	740 (92)		
$\mathrm{H}^{13}\mathrm{CS}_2^+$	$v_1(A_1)$	¹³ CH stretch		3188 (71)	3047 (69)		
	$v_2(A_1)$	S ¹³ CS sym stretch		1023 (8.1)	1005 (8.4)		
	$v_3(A_1)$	S ¹³ CS bend		418 (0.7)	414 (0.8)		
	$v_4(B_1)$	oop ¹³ CH bend		849 (27)	842 (27)		
	$v_5(B_2)$	H ¹³ CS bend		1077 (0.1)	1059 (0.4)		
	$v_{6}(B_{2})$	S ¹³ CS asym stretch		745 (88)	726 (87)		
${\rm HC^{34}S_{2}^{+}}$	$\mathbf{v}_1\left(A_1\right)$	CH stretch		3199 (70)	3057 (68)		
	$v_2(A_1)$	³⁴ SC ³⁴ S sym stretch		1042 (9.7)	1023 (10)		
	$v_3(A_1)$	³⁴ SC ³⁴ S bend		409 (0.8)	405 (0.9)		
	$v_4(B_1)$	oop CH bend		856 (26)	849 (26)		
	$v_5(B_2)$	HC ³⁴ S bend		1087 (0.0)	1068 (0.0)		
	$v_6(B_2)$	³⁴ SC ³⁴ S asym stretch		752 (93)	733 (92)		
DCS_2^+	$\mathbf{v}_1\left(A_1\right)$	CD stretch		2374 (27)	2300 (27)		
	$v_2(A_1)$	SCS sym stretch		1012 (9.2)	994 (9.5)		
	$v_3(A_1)$	SCS bend		418 (0.8)	414 (0.8)		
	$v_4(B_1)$	oop CD bend		674 (9.4)	669 (9.6)		
	$v_5(B_2)$	DCS bend		913 (32)	892 (29)		
	$v_{6}(B_{2})$	SCS asym stretch		657 (49)	646 (51)		

Table S2 Vibrational wavenumbers (in cm⁻¹) and IR intensities of HSCS⁺, HCS₂⁺, and their ¹³C-, ³⁴S-, and D-isotopic variants

^{*a*} M. C. McCarthy, P. Thaddeus, J. J. Wilke and H. F. Schaefer III, *J. Chem. Phys.*, 2009, **130**, 234304. ^{*b*} Relative integrated intensities are shown in parentheses. ^{*c*} Infrared intensities (in km mol⁻¹) are shown in parentheses. ^{*d*} Infrared intensities (in km mol⁻¹) calculated with the CCSD(T)(fc)/cc-pVTZ method are shown in parentheses.

		B3LYP/au	ig-cc-pVTZ			B3LYP/au	lg-cc-pVTZ
Molecule	Mode	Harmonic	Anharmonic	- Molecule	Mode	Harmonic	Anharmonic
H ₂ –HSCS ⁺	v_1	4350 (71) ^a	4138 (63) ^a	$H_2-HCS_2^+$	ν_1	4381 (28) ^a	4170 (26) ^a
	$v_2 (v_1)^b$	2458 (418)	2330 (296)		$v_2 (v_1)^b$	3157 (193)	3026 (146)
	$v_{3}(v_{2})$	1560 (327)	1535 (229)		$v_{3}(v_{5})$	1103 (0.3)	1076 (0.1)
	$v_4(v_3)$	955 (22)	916 (25)		$v_4(v_2)$	1048 (18)	1028 (15)
	$v_{5}(v_{4})$	614 (3.4)	599 (3.0)		$v_{5}(v_{4})$	886 (19)	842 (25)
	ν ₆	436 (0.0)	270 (2.3)		$v_6 (v_6)$	759 (88)	739 (85)
	$v_7 (v_6)$	375 (7.1)	369 (5.3)		$v_7(v_3)$	421 (1.8)	416 (1.8)
	$v_8 (v_5)$	333 (4.2)	326 (4.3)		ν_8	379 (2.5)	222 (0.0)
	v 9	246 (16)	206 (18)		v 9	190 (6.4)	104 (3.2)
	ν_{10}	232 (24)	131 (11)		v_{10}	72 (3.4)	36 (2.9)
	v_{11}	110 (0.0)	31 <i>i</i> (0.0)		ν_{11}	59 (0.0)	220 <i>i</i> (0.0)
	v_{12}	65 (0.1)	49 (0.0)		v_{12}	47 (0.2)	19 (0.2)
H_2 – $HS^{13}CS^+$	v_1	4350 (71)	4136 (64)	$H_2 - H^{13}CS_2^+$	v_1	4381 (28)	4170 (26)
	$v_{2}(v_{1})$	2457 (419)	2330 (199)		$v_{2}(v_{1})$	3145 (195)	3013 (148)
	$v_{3}(v_{2})$	1510 (301)	1488 (278)		$v_{3}(v_{5})$	1093 (0.0)	1066 (0.0)
	$v_{4}(v_{3})$	952 (22)	911 (28)		$v_4(v_2)$	1021 (16)	1003 (13)
	$v_{5}(v_{4})$	614 (3.5)	594 (3.1)		$v_5(v_4)$	879 (19)	835 (27)
	ν_6	436 (0.0)	284 (1.7)		$v_6 (v_6)$	744 (83)	725 (80)
	$v_7(v_6)$	363 (7.7)	357 (6.1)		$v_7(v_3)$	419 (1.7)	415 (1.7)
	$v_8 (v_5)$	323 (4.3)	316 (4.1)		ν_8	379 (2.6)	222 (0.0)
	v ₉	246 (16)	206 (18)		v 9	190 (6.4)	103 (3.2)
	ν_{10}	232 (24)	130 (10)		ν_{10}	71 (2.9)	39 (2.8)
	ν_{11}	110 (0.0)	44 <i>i</i> (0.0)		ν_{11}	59 (0.0)	213 <i>i</i> (0.0)
	v_{12}	65 (0.1)	49 (0.0)		v_{12}	47 (0.2)	21 (0.2)
$H_2 - H^{34}SC^{34}S^+$	v_1	4350 (70)	4136 (64)	$H_2 - HC^{34}S_2^+$	ν_1	4381 (26)	4170 (26)
	$v_{2}(v_{1})$	2455 (419)	2330 (294)		$v_{2}(v_{1})$	3157 (193)	3012 (142)
	$v_{3}(v_{2})$	1552 (327)	1529 (304)		$v_{3}(v_{5})$	1102 (0.3)	1080 (0.0)
	$v_{4}(v_{3})$	954 (22)	913 (28)		$v_4(v_2)$	1040 (19)	1021 (17)
	$v_{5}(v_{4})$	597 (3.1)	578 (2.5)		$v_5(v_4)$	886 (19)	861 (25)
	ν_6	436 (0.0)	266 (2.2)		$v_{6}(v_{6})$	752 (88)	731 (88)
	$v_7(v_6)$	373 (6.8)	366 (5.2)		$v_7(v_3)$	410 (1.7)	405 (2.0)
	$v_8 (v_5)$	331 (4.0)	324 (4.2)		ν_8	379 (2.5)	226 (0.0)
	v 9	246 (16)	206 (18)		v 9	190 (6.3)	107 (3.2)
	ν_{10}	232 (24)	130 (10)		ν_{10}	72 (3.5)	24 (2.2)
	ν_{11}	110 (0.0)	44 <i>i</i> (0.0)		ν_{11}	59 (0.0)	172 <i>i</i> (0.0)
	v_{12}	65 (0.2)	49 (0.0)		v_{12}	47 (0.2)	39 (0.4)
D ₂ –DSCS ⁺	ν_1	3077 (35)	2969 (32)	D_2 - DCS_2^+	ν_1	3099 (14)	2990 (13)

Table S3 Predicted vibrational wavenumbers (in cm⁻¹) and IR intensities of H_2 –HSCS⁺ and H_2 –HCS₂⁺ complexes and their ¹³C-, ³⁴S-, and D-isotopic variants.

$v_{2}(v_{1})$	1768 (172)	1705 (118)	$v_{2}(v_{1})$	2344 (81)	2276 (65)
$v_{3}(v_{2})$	1557 (352)	1534 (329)	$v_{3}(v_{2})$	1009 (19)	990 (17)
$v_{4}(v_{3})$	731 (16)	712 (15)	$v_4 (v_5)$	915 (33)	892 (30)
$v_5(v_4)$	605 (3.2)	583 (2.5)	$v_5(v_4)$	692 (6.9)	671 (8.1)
ν_6	374 (3.7)	369 (4.1)	$v_6 (v_6)$	664 (47)	650 (47)
$v_7 (v_5)$	316 (3.0)	306 (3.4)	$v_7 (v_3)$	419 (1.7)	415 (1.6)
$v_8 (v_6)$	307 (0.2)	227 (0.0)	ν_8	269 (0.8)	198 (0.1)
V 9	176 (8.2)	157 (8.6)	v 9	136 (4.8)	90 (3.1)
ν_{10}	168 (15)	116 (7.1)	v_{10}	61 (3.5)	37 (3.0)
ν_{11}	78 (0.0)	39 (0.0)	v_{11}	42 (0.0)	57 (0.0)
v_{12}	50 (0.0)	30 (0.1)	v_{12}	37 (0.7)	3 (0.1)

^{*a*} Infrared intensities (in km mol⁻¹) are shown in parentheses. ^{*b*} Mode numbers of corresponding monomers are given in parentheses.

			Experime	ents	B3LYP/a	ug-cc-pVTZ	Literature		Isotop	ic ratio ^a	
Molecule	Mode (sym.)	Description	р-Н2	Ar ^b	Harmonic	Anharmonic	Harmonic	<i>p</i> -H ₂	Ar	Harm.	Anharm.
t-HSCS	$v_1(A')$	SH stretch	$2530.2^{c} (<1)^{d}$	2527.5	2616 (0.4) ^e	2441 $(2.1)^{e}$	2857 ^f				
	$v_2(A')$	C=S stretch	1278.3 ^g (81)	1275.2 ^g	1267 (178)	1263 (178)	1358				
	$v_3(A')$	HSC bend	943.1 (30)	941.4	956 (29)	921 (22)	1062				
	$\nu_4(A')$	S–C stretch	632.4 (12)	627.9	635 (9.8)	617 (9.7)	669				
	$\nu_5(A')$	SCS bend	•••		265 (3.1)	256 (2.9)	302				
	$v_6(A'')$	SH torsion		412.9	426 (19)	439 (18)	407				
	$2v_4(A')$	overtone	1231.3 ^g (100)	1227.8 ^g	•••	1206 (0.1)					
<i>t</i> -HS ¹³ CS	$v_1(A')$	SH stretch	2530.5^{c} (<1)	2527.5	2616 (0.4)	2444 (2.1)		1.000	1.000	1.000	1.001
	$v_2(A')$	¹³ C=S stretch	$1251.8^{g}(53)$	1247.1 ^g	1229 (164)	1233 (163)					
	$v_3(A')$	HS13C bend	940.4 (32)	938.9	953 (30)	917 (23)		0.997	0.997	0.997	0.996
	$v_4(A')$	S–C stretch	622.9 (11)	618.3	625 (9.6)	608 (9.6)		0.985	0.985	0.984	0.985
	$v_5(A')$	S ¹³ CS bend	`	•••	260 (3.0)	251 (2.8)				0.983	0.980
	$v_6(A'')$	SH torsion		•••	422 (19)	439 (18)				0.991	0.999
	$2v_4(A')$	overtone	$1202.9^{g}(100)$	1201.0 ^g		1182 (0.1)					
<i>t</i> -H ³⁴ SC ³⁴ S	$v_1(A')$	³⁴ SH stretch	$2527.7^{\circ}(<1)$	2527.7	2614 (0.4)	2442 (2.2)			1.000	0.999	1.000
	$v_2(A')$	C=34S stretch	1265.5 ^g (100)	1264.1 g	1261 (177)	1252 (175)					
	$v_3(A')$	H ³⁴ SC bend	940.7 (22)	939.2	953 (29)	918 (23)		0.998	0.998	0.997	0.997
	$v_4(A')$	³⁴ S–C stretch	621.6 (7)	617.1	625 (9.5)	606 (9.3)		0.983	0.983	0.983	0.982
	$v_5(A')$	³⁴ SC ³⁴ S bend	`	•••	260 (2.9)	251 (2.8)				0.984	0.982
	$v_6(A'')$	³⁴ SH torsion		412.8	425 (19)	441 (18)			1.000	0.999	1.004
	$2v_4(A')$	overtone	1216.4 ^g (44)	1211.2 ^g		1188 (0.1)					
t-DSCS	$v_1(A')$	SD stretch	1827.7 (1)	1805.3	1880 (0.4)	1791 (3.7)		0.717	0.714	0.719	0.734
	$v_2(A')$	C=S stretch	$1252.6^{g}(100)$	1249.7 ^g	1252 (196)	1240 (186)					
	$v_3(A')$	DSC bend	716.6 (17)	713.8	721 (17)	708 (16)		0.760	0.758	0.754	0.767
	$v_4(A')$	S–C stretch	618.8 (3)	614.8	622 (4.2)	607 (3.9)		0.979	0.979	0.978	0.984
	$\nu_5(A')$	SCS bend			260 (2.8)	254 (2.7)				0.985	0.992
	$v_6(A'')$	SD torsion			340 (10)	340 (10)				0.985	0.992
	$2v_4(A')$	overtone	1218.7 ^g (73)	1213.1 ^g	•••	1195 (0.0)					
c-HSCS	$v_1(A')$	SH stretch	2312.7 (73)		2433 (47)	2255 (72)	2834 ^f				
	$v_2(A')$	C=S stretch	OVL^h		1286 (168)	1273 (150)	1355				
	$v_3(A')$	HSC bend	889.0 (100)		938 (48)	918 (43)	1052				
	$\nu_4(A')$	S–C stretch	`		599 (2.7)	586 (2.8)	633				
	$\nu_5(A')$	SCS bend			243 (5.8)	235 (5.9)	303				
	$v_6(A'')$	SH torsion			437 (1.4)	429 (1.3)	413				
c-HS ¹³ CS	$v_1(A')$	SH stretch	2312.2 (82)		2433 (46)	2255 (72)		1.000		1.000	1.000
	$v_2(A')$	¹³ C=S stretch	OVL ^h		1245 (157)	1234 (153)				0.968	0.970
	$v_3(A')$	HS13C bend	875.5 (100)		934 (47)	914 (43)	•••	0.985		0.996	0.996

Table S4 Vibrational wavenumbers (in cm⁻¹) and IR intensities of *t*-HSCS, *c*-HSCS, and HCS₂ isomers and their ¹³C-, ³⁴S-, and D-isotopic variants

ESI-10

	$v_4(A')$	S–C stretch	•••		594 (2.6)	581 (2.8)			•••	0.991	0.992
	$v_5(A')$	S ¹³ CS bend			238 (5.6)	230 (5.7)				0.979	0.977
	$\nu_6(A'')$	SH torsion			431 (1.6)	424 (1.2)				0.987	0.988
c-H ³⁴ SC ³⁴ S	$v_1(A')$	³⁴ SH stretch	2310.8 (100)		2431 (47)	2253 (72)		0.999		0.999	0.999
	$v_2(A')$	C= ³⁴ S stretch	OVL ^h		1279 (166)	1265 (151)				0.994	0.994
	$v_3(A')$	H ³⁴ SC bend	883.9 (70)		937 (47)	918 (43)		0.994		0.999	0.999
	$v_4(A')$	³⁴ S–C stretch	•••		585 (2.7)	573 (2.8)				0.977	0.977
	$v_5(A')$	³⁴ SC ³⁴ S bend	•••		240 (5.6)	232 (5.8)				0.989	0.989
	$\nu_6(A'')$	³⁴ SH torsion	•••		436 (1.4)	429 (1.3)				0.996	0.998
c-DSCS	$v_1(A')$	SD stretch			1748 (27)	1657 (36)			•••	0.718	0.735
	$v_2(A')$	C=S stretch			1286 (165)	1263 (126)			•••	1.000	0.992
	$v_3(A')$	DSC bend			718 (37)	701 (33)			•••	0.765	0.763
	$\nu_4(A')$	S–C stretch		•••	593 (0.9)	581 (1.1)		•••		0.989	0.991
	$v_5(A')$	SCS bend			229 (4.4)	224(4.5)			•••	0.944	0.954
	$\nu_6(A'')$	SD torsion			375 (0.0)	370 (0.0)			•••	0.859	0.863
HCS_2	$v_1(A_1)$	CH stretch		•••	3129 (3.6)	2976 (7.8)	3170 ⁱ				
	$v_2(A_1)$	CS ₂ sym stretch			901 (1.9)	887 (2.1)	914				
	$v_3(A_1)$	CS ₂ bend			307 (0.1)	302 (0.2)	311				
	$v_4 (B_1)$	oop CH bend		•••	830 (24)	823 (22)	2286				
	$v_5(B_2)$	ip CH bend		1252.9 ^c	1219 (10)	1209 (14)	2995				
	$v_6(B_2)$	CS ₂ asym stretch		1004.9 ^c	902 (44)	883 (39)	1112				
$H^{13}CS_2$	$v_1(A_1)$	¹³ CH stretch			3119 (3.5)	2966 (7.6)				0.997	0.997
	$v_2(A_1)$	¹³ CS ₂ sym stretch			880 (1.7)	866 (2.0)				0.976	0.977
	$v_3(A_1)$	¹³ CS ₂ bend			305 (0.1)	300 (0.2)				0.994	0.995
	$v_4 (B_1)$	oop ¹³ CH bend			822 (24)	814 (23)				0.989	0.989
	$v_5(B_2)$	ip ¹³ CH bend		1252.3 ^c	1212 (12)	1200 (16)			1.000	0.994	0.992
	$v_6(B_2)$	¹³ CS ₂ asym stretch		977.9°	879 (40)	861 (36)			0.973	0.975	0.975
$HC^{34}S_2$	$v_1(A_1)$	CH stretch			3129 (3.6)	2975 (7.8)				1.000	1.000
	$v_2(A_1)$	C ³⁴ S ₂ sym stretch			892 (1.8)	878 (2.1)				0.990	0.990
	$v_3(A_1)$	$C^{34}S_2$ bend			299 (0.1)	295 (0.2)				0.975	0.976
	$v_4 (B_1)$	oop CH bend		•••	831 (24)	823 (23)				1.000	0.999
	$v_5(B_2)$	ip CH bend			1220 (10)	1207 (14)				1.000	0.998
	$v_6(B_2)$	C ³⁴ S ₂ asym stretch		999.0°	895 (43)	877 (39)		•••	0.994	0.993	0.993
DCS_2	$v_1(A_1)$	CD stretch			2307 (2.8)	2229 (4.7)				0.737	0.749
	$v_2(A_1)$	CS ₂ sym stretch			876 (1.6)	863 (1.7)				0.972	0.973
	$v_3(A_1)$	CS ₂ bend		•••	305 (0.1)	301 (0.2)				0.994	0.995
	$v_4(B_1)$	oop CD bend			669 (10)	664 (10)				0.806	0.806
	$v_5(B_2)$	ip CD bend		1065.5°	1008 (5.0)	985 (2.5)			0.850	0.826	0.815
	$v_{6}(B_{2})$	CS ₂ asym stretch		853.0 ^c	786 (33)	776 (34)			0.849	0.872	0.880

^{*a*} Isotopic ratio is defined as the ratio of wavenumber of the isotopic species to that of the naturally abundant species. ^{*b*} R. B. Bohn, G. D. Brabson and L. Andrews, *J. Phys. Chem.*, 1992, **96**, 1582–1589. ^{*c*} Tentative assignment. ^{*d*} Relative infrared intensities are shown in

parentheses. ^{*e*} Infrared intensities (in km mol⁻¹) are shown in parentheses. ^{*f*} Harmonic vibrational wavenumbers calculated at the DZP level using the HONDO 7.0 program; R. B. Bohn, G. D. Brabson and L. Andrews, *J. Phys. Chem.*, 1992, **96**, 1582–1589. ^{*g*} Fermi resonance. ^{*h*} Unidentified preferably due to interference from the intense line of corresponding *t*-HSCS isotopic variants. ^{*i*} Harmonic vibrational wavenumbers calculated with the mPW2PLYP/aug-cc-pVTZ method; Z. Qin, R. Cong, Z. Liu, H. Xie, Z. Tang, and H. Fan, *J. Chem. Phys.*, 2014, **140**, 214318. Predicted wavenumbers for the v₄ (2286 cm⁻¹) and v₅ (2995 cm⁻¹) modes are abnormally high for the CH-bending modes most probably due to an inappropriate choice of method.

	Description	B3LYP	CCSD(T)
a	$H + CS_2$	0.0	0.0
b	HS + CS	92.8	76.1
c	HCS_2	-105.4	-98.5
d	t-HSCS	-67.5	-63.4
e	c-HSCS	-66.0	-60.2
f	$TS: H + CS_2 \rightarrow HCS_2$	28.9	36.9
g	TS: $H + CS_2 \rightarrow c$ -HSCS	1.7	0.0
h	TS: $HCS_2 \rightarrow t$ -HSCS	46.6	51.9
i	TS: c -HSCS $\rightarrow t$ -HSCS (bending)	-52.6	-39.9
j	TS: c -HSCS $\rightarrow t$ -HSCS (torsional)	-3.6	-18.6

Table S5 Zero-point-energy corrected relative energies (in kJ mol⁻¹) of minima and transition states (TS) in the potential energy diagram of the H + CS₂ system calculated at the B3LYP and CCSD(T) levels with the aug-cc-pVTZ basis set

			Exp	eriments		B3LYP/au	ug-cc-pVTZ	Literature	e Isotopic ratio ^a		ic ratio ^a	io ^a	
Molecule	Mode	Description	<i>p</i> -H ₂	Ar ^b	Gas ^c	Harmonic	Anharmonic	Harmonic	<i>p</i> -H ₂	Ar	Harm.	Anharm.	
	(sym.)												
t-HC(S)SH	$v_1(A')$	CH stretch			2988.8	$3094(5.2)^d$	2947 (8.7) ^d	3343 ^e					
	$v_2(A')$	SH stretch	•••			2650 (1.2)	2482 (0.7)	2875					
	$v_3(A')$	HCS deform	1287.3 (40) ^f	1290.5	1283.0	1318 (56)	1288 (46)	1469					
	$v_4(A')$	C=S stretch	1056.9 (100)	1059.8	1057.2	1066 (139)	1052 (132)	1166					
	$v_5(A')$	CSH deform	934.6 (24)	933.4	935.5	941 (53)	923 (51)	1054					
	$\nu_6(A')$	C–S stretch	685.3 (30)	682.6	682.5	682 (42)	668 (44)	759					
	$\nu_7(A')$	S-C-SH bend	•••			323 (2.6)	321 (2.3)	357					
	$\nu_8(A'')$	oop CH bend	828.5 (23)	836.8	824.0	850 (32)	832 (31)	951					
	$v_9(A'')$	SH torsion				440 (5.3)	398 (6.0)	449					
$t-H^{13}C(S)SH$	$v_1(A')$	¹³ CH stretch				3084 (5.1)	2938 (8.6)				0.997	0.997	
	$\nu_2(A')$	SH stretch				2650 (1.2)	2482 (0.7)				1.000	1.000	
	$\nu_3(A')$	H ¹³ CS deform	1276.0 (28)	1280		1308 (42)	1278 (32)		0.991	0.992	0.992	0.992	
	$\nu_4(A')$	¹³ C=S stretch	1035.9 (100)	1037.5		1044 (133)	1030 (128)		0.980	0.979	0.979	0.980	
	$\nu_5(A')$	¹³ CSH deform	926.4 (52)	925.1		932 (56)	915 (53)		0.991	0.991	0.991	0.991	
	$\nu_{6}\left(A'\right)$	¹³ C–S stretch	673.9 (35)			670 (41)	656 (43)		0.983		0.983	0.983	
	$\nu_7(A')$	S-13C-SH bend				320 (2.6)	318 (2.3)				0.992	0.991	
	$\nu_8(A'')$	oop ¹³ CH bend	820.1 (25)	828		841 (32)	824 (31)		0.990	0.990	0.990	0.990	
	$\nu_9(A'')$	SH torsion				438 (5.1)	395 (5.7)				0.994	0.992	
<i>t</i> -HC(³⁴ S) ³⁴ SH	$v_1(A')$	CH stretch	•••			3094 (5.2)	2947 (8.8)				1.000	1.000	
	$\nu_2(A')$	³⁴ SH stretch				2648 (1.2)	2480 (0.7)				0.999	0.999	
	$\nu_3(A')$	HC ³⁴ S deform	1285.9 (32)	1289.1		1317 (55)	1286 (40)		0.999	0.999	1.000	0.998	
	$\nu_4(A')$	C=34S stretch	1050.0 (100)	1052.1		1059 (137)	1045 (130)		0.993	0.993	0.993	0.993	
	$\nu_{5}\left(A'\right)$	C ³⁴ SH deform	933.7 (26)	932.5		939 (55)	922 (53)		0.999	0.999	0.999	0.998	
	$\nu_{6}\left(A'\right)$	C– ³⁴ S stretch	676.6 (31)	674.8	•••	674 (40)	659 (43)	•••	0.987	0.989	0.988	0.988	
	$\nu_7(A')$	³⁴ S–C– ³⁴ SH bend	•••		•••	316 (2.4)	314 (2.1)	•••		•••	0.980	0.979	
	$\nu_8(A'')$	oop CH bend	828.1 (25)	835	•••	849 (32)	832 (31)	•••	1.000	0.998	1.000	1.000	
	$\nu_9(A'')$	³⁴ SH torsion	•••	•••	•••	439 (5.3)	396 (5.9)	•••		•••	0.998	0.996	
t-DC(S)SD	$v_1(A')$	CD stretch	•••	•••	•••	2277 (3.6)	2173 (4.8)	2642		•••	0.736	0.737	
	$v_2(A')$	SD stretch	•••		•••	1903 (0.5)	1817 (0.3)	2063		•••	0.718	0.732	
	$\nu_3 (A')^g$	DCS deform	•••	867	•••	879 (13)	867 (11)	958	0.672	0.731	0.666	0.673	
	$\nu_4 (A')^g$	C=S stretch	•••	1133.5	1150.5	1142 (207)	1120 (192)	1277	1.070	1.088	1.072	1.065	
	$\nu_5(A')$	CSD deform	•••	764.5	•••	764 (45)	752 (42)	843	0.819	•••	0.813	0.814	
	$\nu_{6}\left(A'\right)$	C–S stretch	•••	622	660.5	619 (18)	610 (18)	765	0.911	0.968	0.908	0.914	
	$\nu_7(A')$	S–C–SH bend	•••	•••	•••	304 (2.7)	302 (2.5)	694		•••	0.940	0.940	

Table S6 Vibrational wavenumbers (in cm⁻¹) and IR intensities of *t*-HC(S)SH and *c*-HC(S)SH isomers and their ¹³C-, ³⁴S- and D-isotopic variants

$ \begin{array}{c c-HC(4S)SI} v_1(4') & SD \ lorsion & \cdots & \cdots & 339 (4.2) & 317 (4.4) & 337 & \cdots & \cdots & 0.70 & 0.796 \\ v_1(4') & SH \ stretch & \cdots & \cdots & 320 (4.2) & 3152 \\ v_2(4') & SH \ stretch & \cdots & \cdots & 2648 (0.8) & 2481 (1.8) & 2662 \\ v_3(4') & HCS \ deform & 1262 (100) & 1265 & 1255 & 1289 (84) & 1262 (76) & 1449 \\ v_4(4') & C-S \ stretch & 1080. (93) & 1082. 2 & 1080.8 & 1092 (98) & 1075 (92) & 1202 \\ v_4(4') & C-S \ stretch & \cdots & 725.8 & 710.0 & 721 (29) & 707 (36) & 785 \\ v_6(4') & C-S \ stretch & \cdots & 725.8 & 710.0 & 721 (29) & 707 (36) & 785 \\ v_6(4') & C-S \ stretch & \cdots & 774.5 & 817 (29) & 805 (27) & 915 \\ v_6(4') & C-S \ stretch & \cdots & 0.8 & 072 & 974.5 & 817 (29) & 805 (27) & 915 \\ v_6(4') & SH \ stretch & \cdots & \cdots & 3081 (13) & 350 (13) & 365 \\ v_6(4') & SH \ stretch & 001 \ N^1 & 1255 & \cdots & 1278 (63) & 1251 (57) & \cdots & \cdots & 0.997 & 0.997 \\ v_4(4') & SH \ stretch & 1061.4 (89) & 1062.7 & \cdots & 1074 (94) & 1056 (89) & \cdots & 0.938 & 0.982 & 0.982 \\ v_6(4') & SH \ stretch & 1061.4 (89) & 1062.7 & \cdots & 726.8 & (118) & \cdots & \cdots & 0.997 & 0.997 \\ v_6(4') & SH \ stretch & 1061.4 (89) & 1062.7 & \cdots & 1073 (63) & 1251 (57) & \cdots & \cdots & 0.997 & 0.997 \\ v_6(4') & SH \ stretch & 001 \ N^1 & 1255 & \cdots & 1278 (63) & 1251 (57) & \cdots & \cdots & 0.993 & 0.992 & 0.992 \\ v_6(4') & ^{10}C-S \ stretch & 1061.4 (89) & 1062.7 & \cdots & 736 (31) & 622 (37) & \cdots & \cdots & 0.997 & 0.997 \\ v_6(4') & ^{10}C-S \ stretch & 001 \ N^1 & \cdots & N^2 & 380 (14) & 349 (13) & \cdots & \cdots & 0.999 & 0.998 \\ v_6(4') & SH \ stretch & \cdots & \cdots & N^2 & 249 (0.1) & 206 (12) \ \cdots & \cdots & 0.999 & 0.998 \\ v_6(4') & SH \ stretch & \cdots & \cdots & 244 (28) \ 740 (13) \ 747 \ (13) \ SH \ stretch & 074 \ N^2 \ SH \ stretch \ N^2 \ N^2 \ SH \ stretch$		$v_8(A'')$	oop CD bend		670	668.0	682 (16)	672 (15)	344	0.801	0.811	0.802	0.807
c-Hi ² C(S)SH v(4) CH stretch		$v_9(A'')$	SD torsion				339 (4.2)	317 (4.4)	337			0.770	0.796
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	c-HC(S)SH	$v_1(A')$	CH stretch			•••	3101 (7.5)	2960 (12)	3352				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$v_2(A')$	SH stretch				2648 (0.8)	2481 (1.8)	2862				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$v_3(A')$	HCS deform	1262.4 (100)	1265.4	1255.5	1289 (84)	1262 (76)	1449				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_4(A')$	C=S stretch	1080.1 (93)	1082.2	1080.8	1092 (98)	1075 (92)	1202				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$v_5(A')$	CSH deform	926.5 (93)	922.5		933 (87)	918 (76)	1050				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$v_6(A')$	C–S stretch		725.8	710.0	721 (29)	707 (36)	785				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_7(A')$	S-C-SH bend				301 (0.1)	300 (0.1)	335				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_8(A'')$	oop CH bend		807.2	794.5	817 (29)	805 (27)	915				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_9(A'')$	SH torsion			•••	381 (13)	350 (13)	365				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	c-H ¹³ C(S)SH	$v_1(A')$	¹³ CH stretch			•••	3092 (7.3)	2951 (12)				0.997	0.997
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_2(A')$	SH stretch			•••	2648 (0.8)	2481 (1.8)		•••		1.000	1.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_3(A')$	H ¹³ CS deform	OVL^h	1255	•••	1278 (63)	1251 (57)			0.992	0.992	0.992
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_4(A')$	¹³ C=S stretch	1061.4 (89)	1062.7	•••	1073 (94)	1056 (89)		0.983	0.982	0.982	0.982
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_5(A')$	¹³ CSH deform	919.6 (100)	918.2	•••	925 (91)	911 (80)		0.993	0.992	0.992	0.992
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_6(A')$	¹³ C–S stretch			•••	706 (31)	692 (37)		•••		0.979	0.979
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_7(A')$	S-13C-SH bend			•••	299 (0.1)	298 (0.1)		•••		0.993	0.993
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_8(A'')$	oop ¹³ CH bend		799.0	•••	807 (28)	796 (27)		•••	0.990	0.988	0.988
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_9(A'')$	SH torsion			•••	380 (14)	349 (13)				0.997	0.997
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>c</i> -HC(³⁴ S) ³⁴ SH	$v_1(A')$	CH stretch			•••	3103 (7.5)	2960 (12)				1.000	1.000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_2(A')$	³⁴ SH stretch			•••	2645 (0.8)	2479 (1.8)				0.999	0.999
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$v_3(A')$	HC ³⁴ S deform	OVL^i		•••	1288 (82)	1261 (74)				1.000	0.999
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_4(A')$	C= ³⁴ S stretch	1074.6 (63)	1076.4	•••	1087 (96)	1070 (91)		0.995	0.995	0.995	0.995
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_5(A')$	C ³⁴ SH deform	922.2 ^j (100)	921.4		928 (88)	913 (77)		0.995	0.996	0.995	0.995
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$v_6(A')$	C- ³⁴ S stretch				714 (29)	701 (35)				0.991	0.992
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_7(A')$	³⁴ S–C– ³⁴ SH bend			•••	294 (0.1)	293 (0.1)				0.977	0.976
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$v_8(A'')$	oop CH bend		806.1		816 (29)	805 (28)			0.999	0.999	0.999
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\nu_9(A'')$	³⁴ SH torsion				381 (13)	349 (13)				0.999	0.999
$v_2(A')$ SD stretch1901 (0.4)1816 (0.6)20550.7180.732 $v_3(A')$ DCS deform1123.41132 (231)1111 (216)12710.8880.8790.881 $v_4(A')$ C=S stretch879 (1.1)864 (1.1)9680.8050.804 $v_5(A')$ CSD deform776.7779 (55)765 (55)8630.8390.8350.834 $v_6(A')$ C-S stretch613.3622 (6.1)613 (7.0)6870.8450.8630.868 $v_7(A')$ S-C-SD bend295 (0.1)294 (0.1)2690.9790.979 $v_8(A'')$ oop CD bend655.8667 (15)659 (15)7480.8120.8170.819 $v_9(A'')$ SD torsion281 (4.6)265 (4.5)3290.7360.757	c-DC(S)SD	$v_1(A')$	CD stretch				2285 (5.3)	2175 (6.6)	2470			0.737	0.735
$v_3(A')$ DCS deform1123.41132 (231)1111 (216)12710.8880.8790.881 $v_4(A')$ C=S stretch879 (1.1)864 (1.1)9680.8050.804 $v_5(A')$ CSD deform776.7779 (55)765 (55)8630.8390.8350.834 $v_6(A')$ C-S stretch613.3622 (6.1)613 (7.0)6870.8450.8630.868 $v_7(A')$ S-C-SD bend295 (0.1)294 (0.1)2690.9790.979 $v_8(A'')$ oop CD bend655.8667 (15)659 (15)7480.8120.8170.819 $v_9(A'')$ SD torsion281 (4.6)265 (4.5)3290.7360.757		$v_2(A')$	SD stretch				1901 (0.4)	1816 (0.6)	2055			0.718	0.732
$v_4(A')$ C=S stretch w w $879(1.1)$ $864(1.1)$ 968 w 0.805 0.804 $v_5(A')$ CSD deform 776.7 $779(55)$ $765(55)$ 863 0.839 0.835 0.834 $v_6(A')$ C-S stretch 613.3 $622(6.1)$ $613(7.0)$ 687 0.845 0.863 0.868 $v_7(A')$ S-C-SD bend $295(0.1)$ $294(0.1)$ 269 0.979 0.979 $v_8(A'')$ oop CD bend 655.8 $667(15)$ $659(15)$ 748 0.812 0.817 0.819 $v_9(A'')$ SD torsion $281(4.6)$ $265(4.5)$ 329 0.736 0.757		$v_3(A')$	DCS deform		1123.4		1132 (231)	1111 (216)	1271		0.888	0.879	0.881
$v_5(A')$ CSD deform776.7779 (55)765 (55)8630.8390.8350.834 $v_6(A')$ C-S stretch613.3622 (6.1)613 (7.0)6870.8450.8630.868 $v_7(A')$ S-C-SD bend295 (0.1)294 (0.1)2690.9790.979 $v_8(A'')$ oop CD bend655.8667 (15)659 (15)7480.8120.8170.819 $v_9(A'')$ SD torsion281 (4.6)265 (4.5)3290.7360.757		$v_4(A')$	C=S stretch				879 (1.1)	864 (1.1)	968			0.805	0.804
$v_6(A')$ C-S stretch 613.3 $622(6.1)$ $613(7.0)$ 687 0.845 0.863 0.868 $v_7(A')$ S-C-SD bend $295(0.1)$ $294(0.1)$ 269 0.979 0.979 $v_8(A'')$ oop CD bend 655.8 $667(15)$ $659(15)$ 748 0.812 0.817 0.819 $v_9(A'')$ SD torsion $281(4.6)$ $265(4.5)$ 329 0.736 0.757		$v_5(A')$	CSD deform		776.7		779 (55)	765 (55)	863		0.839	0.835	0.834
$v_7(A')$ S-C-SD bend295 (0.1)294 (0.1)2690.9790.979 $v_8(A'')$ oop CD bend655.8667 (15)659 (15)7480.8120.8170.819 $v_9(A'')$ SD torsion281 (4.6)265 (4.5)3290.7360.757		$v_6(A')$	C–S stretch		613.3		622 (6.1)	613 (7.0)	687		0.845	0.863	0.868
$v_8(A'')$ oop CD bend655.8667 (15)659 (15)7480.8120.8170.819 $v_9(A'')$ SD torsion281 (4.6)265 (4.5)3290.7360.757		$v_7(A')$	S-C-SD bend				295 (0.1)	294 (0.1)	269			0.979	0.979
$v_9(A'')$ SD torsion $281(4.6)$ 265 (4.5) 329 0.736 0.757		$v_8(A'')$	oop CD bend		655.8		667 (15)	659 (15)	748		0.812	0.817	0.819
		$\nu_9(A'')$	SD torsion			•••	281 (4.6)	265 (4.5)	329	•••		0.736	0.757

^a Isotopic ratio is defined as the ratio of wavenumber of the isotopic species to that of the naturally abundant species. ^b R. B. Bohn, G. D.

Brabson and L. Andrews, *J. Phys. Chem.*, 1992, **96**, 1582–1589. ^{*c*} F. Ioannoni, D. C. Moule, J. D. Goddard and D. J. Clouthier, *J. Mol. Struct.* 1989, **197**, 159–170. ^{*d*} Infrared intensities (in km mol⁻¹) are shown in parentheses. ^{*e*} Harmonic vibrational wavenumbers calculated at the DZP level using the HONDO 7.0 program; R. B. Bohn, G. D. Brabson and L. Andrews, *J. Phys. Chem.*, 1992, **96**, 1582–1589. ^{*f*} Relative infrared intensities are shown in parentheses. ^{*g*} Mode numbers follow those of *t*-HC(S)SH. These modes are mixed, resulting in anomalous isotopic ratios. ^{*h*} Unidentified probably due to interference from the intense 1251.8 cm⁻¹ line of *t*-HS¹³CS. ^{*i*} Unidentified probably due to interference from the intense 1251.8 cm⁻¹ line of *t*-HS¹³CS. ^{*i*} Unidentified probably due to interference from the intense 1251.8 cm⁻¹ line of *t*-HS¹³CS. ^{*i*} Unidentified probably due to interference from the intense 1251.8 cm⁻¹ line of *t*-HS¹³CS. ^{*i*} Unidentified probably due to interference from the intense 1251.8 cm⁻¹ line of *t*-HS¹³CS. ^{*i*} Unidentified probably due to interference from the intense 1251.8 cm⁻¹ line of *t*-HS¹³CS. ^{*i*} Unidentified probably due to interference from the intense 1251.8 cm⁻¹ line of *t*-HS¹³CS. ^{*i*} Unidentified probably due to interference from the intense 1251.8 cm⁻¹ line of *t*-HS¹³CS. ^{*i*} Unidentified probably due to interference from the intense 1251.8 cm⁻¹ line of *t*-HS¹³CS. ^{*i*} Unidentified probably due to interference from the intense 1251.8 cm⁻¹ line of *t*-HS¹³CS. ^{*i*} Unidentified probably due to interference from the intense 1251.8 cm⁻¹ line of *t*-HS¹³CS. ^{*i*} Unidentified probably due to interference from the intense 1251.8 cm⁻¹ line of *t*-HS¹³CS.

			Experiments		B3LYP/au	B3LYP/aug-cc-pVTZ		Isotopic ratio ^{<i>a</i>}					
Species	Mode (sym.)	Description	<i>p</i> -Н ₂	Ne ^{b,c}	Ar ^c	Harmonic	Anharmonic	<i>p</i> -H ₂	Ne	Ar	Harmonic	Anharmonic	
CS_2^-	$v_1(A_1)$	sym stretch				645 (23)	618 (21)						
	$v_2(A_1)$	bend				322 (10)	318 (9.4)						
	$v_3(B_2)$	asym stretch	1163.0	1159.2	1160.4	1174 (580)	1155 (561)						
$^{13}CS_2^{-}$	$\mathbf{v}_{1}\left(A_{1}\right)$	sym stretch				636 (20)	641 (20)				0.986	1.037	
	$v_2(A_1)$	bend				316 (9.3)	312 (8.9)				0.981	0.981	
	$v_3(B_2)$	asym stretch	1123.3	1122.2	1123.3	1136 (547)	1118 (530)	0.966	0.968	0.968	0.968	0.968	
$C^{34}S_2^{-}$	$\mathbf{v}_{1}\left(A_{1}\right)$	sym stretch				633 (23)	608 (22)				0.981	0.983	
	$v_2(A_1)$	bend				317 (9.7)	313 (9.3)				0.984	0.984	
	$v_3(B_2)$	asym stretch	1157.4	1153.5	1154.8	1168 (570)	1149 (551)	0.995	0.995	0.995	0.995	0.995	

Table S7 Vibrational wavenumbers (in cm⁻¹) and IR intensities of CS₂⁻, ¹³CS₂⁻, and C³⁴S₂⁻

^{*a*} Isotopic ratio is defined as the ratio of wavenumber of the isotopic species to that of the naturally abundant species. ^{*b*} T. M. Halasinski, J. T. Godbout, J. Allison and G. E. Leroi, *J. Phys. Chem.*, 1996, **100**, 14865–14871. ^{*c*} M. Zhou and L. Andrews, *J. Chem. Phys.*, 2000, **112**, 6576–6582.

			Experiment	B3LYP/au	ug-cc-pVTZ	mPW2PLYP ^a		Isotopic ra	atio ^b
Molecule	Mode (sym.)	Description ^c	p-H ₂	Harmonic	Anharmonic	Harmonic	<i>p</i> -Н ₂	Harmonic	Anharmonic
HCS_2^-	$v_1(A_1)$	CH stretch	2875.7 (12) ^d	3011 (46) ^e	2841 (70) ^e	3049			
	$v_2(A_1)$	SCS sym stretch	•••	772 (0.0)	760 (0.0)	781			
	$v_3(A_1)$	SCS bend	•••	344 (0.5)	342 (0.5)	347			
	$v_4 (B_1)$	oop CH bend	814.3 ^{<i>f</i>} (43)	822 (36)	815 (34)	831			
	$v_5(B_2)$	HCS bend	1249.9 (9)	1269 (89)	1244 (79)	1277			
	$v_{6}(B_{2})$	SCS asym stretch	1003.2 (100)	1002 (470)	983 (461)	1022			
${\rm H}^{13}{\rm CS}_2^{-}$	$\mathbf{v}_1\left(A_1\right)$	¹³ CH stretch	2867.0 (14)	3001 (47)	2832 (70)		0.997	0.997	0.997
	$v_2(A_1)$	S ¹³ CS sym stretch	•••	754 (0.0)	743 (0.0)			0.998	0.978
	$\nu_3(A_1)$	S ¹³ CS bend	•••	341 (0.4)	339 (0.4)			0.992	0.992
	$v_4(B_1)$	oop ¹³ CH bend	$807.5^{f}(7)$	811 (36)	804 (33)		0.992	0.987	0.987
	$v_5(B_2)$	H ¹³ CS bend	OVL^g	1263 (67)	1239 (58)			0.995	0.996
	$v_{6}(B_{2})$	S ¹³ CS asym stretch	976.9 (100)	975 (461)	956 (452)		0.974	0.972	0.973
${\rm HC^{34}S_{2}^{-}}$	$\mathbf{v}_1\left(A_1\right)$	CH stretch	2875.7 (13)	3011 (46)	2841 (70)		1.000	1.000	1.000
	$v_2(A_1)$	³⁴ SC ³⁴ S sym stretch	•••	763 (0.1)	751 (0.0)			0.989	0.989
	$v_{3}(A_{1})$	³⁴ SC ³⁴ S bend		336 (0.5)	333 (0.5)			0.976	0.977
	$v_4(B_1)$	oop CH bend	OVL^h	822 (37)	814 (34)			0.999	0.999
	$v_5(B_2)$	HC ³⁴ S bend	1249.9 (9)	1268 (89)	1244 (78)		1.000	1.000	1.000
	$v_{6}(B_{2})$	³⁴ SC ³⁴ S asym stretch	1003.2 (100)	996 (461)	977 (452)		0.994	0.994	0.994
DCS_2^-	$\mathbf{v}_1\left(A_1\right)$	CD stretch	2176.0 (4)	2214 (22)	2145 (70)		0.757	0.735	0.755
	$v_2(A_1)$	SCS sym stretch		753 (0.0)	743 (0.0)			0.976	0.978
	$v_3(A_1)$	SCS bend		341 (0.4)	339 (0.4)			0.992	0.992
	$v_4(B_1)$	oop CD bend	679.2 (4)	681 (20)	675 (19)		0.834	0.828	0.829
	$\nu_5 (B_2)^i$	DCS bend	852.2 (14)	860 (65)	848 (67)		0.682	0.678	0.681
	$\nu_{6} (B_{2})^{i}$	SCS asym stretch	1067.8 (100)	1062 (492)	1041 (474)		1.064	1.060	1.060

Table S8 Vibrational wavenumbers (in cm⁻¹) and IR intensities of HCS₂⁻ and its ¹³C-, ³⁴S- and D-isotopic variants

^{*a*} With the aug-cc-pVTZ basis set; Z. Qin, R. Cong, Z. Liu, H. Xie Z. Tang and H. Fan, *J. Chem. Phys.*, 2014, **140**, 214318. ^{*b*} Isotopic ratio is defined as the ratio of wavenumber of the isotopic species to that of the naturally abundant species. ^{*c*} oop, out-of-plane. ^{*d*} Relative infrared intensities are shown in parentheses. ^{*e*} Infrared intensities (in km mol⁻¹) are shown in parentheses. ^{*f*} Tentative assignments. ^{*g*} Unidentified probably due to interference from the 1236.6 cm⁻¹ line of ¹³CS. ^{*h*} Unidentified due to interference from features of unassigned species around 810 cm⁻¹. ^{*i*} Mode numbers follow those of HCS₂⁻.

			[H, ¹²	$^{2}C, ^{32}S]$	[H, ¹³	$^{3}C, ^{32}S]$	[H, ¹²	C, ³⁴ S]	[D, ¹²	$^{2}C, ^{32}S]$
Isomer	Mode	Description	Harmonic	Anharmonic	Harmonic	Anharmonic	Harmonic	Anharmonic	Harmonic	Anharmonic
t-HSCS ⁻	$v_1(A')$	SH stretch	2606 (25) ^a	2439 (40) ^a	2606 (25) ^a	2441 (39) ^a	2603 (25) ^a	2439 (39) ^a	1871 (12) ^a	1784 (18) ^a
	$v_2(A')$	HSC bend +	981 (139)	971 (178)	964 (112)	943 (149)	977 (134)	968 (172)	924 (240)	879 (231)
		CS stretch								
	$\nu_3(A')$	HSC bend +	814 (136)	783 (95)	809 (148)	777 (108)	813 (137)	778 (98)	646 (55)	616 (49)
		CS stretch								
	$\nu_4(A')$	(H)SC	517 (116)	478 (128)	501 (112)	464 (119)	514 (113)	476 (125)	507 (96)	470 (99)
		stretch								
	$\nu_5(A')$	SCS bend	269 (10)	257 (13)	268 (10)	256 (12)	262 (10)	250 (12)	266 (10)	255 (12)
	$\nu_6(A'')$	SH torsion	430 (14)	453 (13)	429 (13)	454 (12)	430 (14)	454 (13)	322 (10)	329 (9.3)
c-HSCS ⁻	$v_1(A')$	SH stretch	2241 (289)	1969 (355)	2241 (289)	1968 (355)	2239 (289)	1968 (355)	1610 (148)	1476 (170)
	$v_2(A')$	HSC bend +	968 (185)	986 (196)	942 (156)	891 (159)	962 (176)	978 (187)	955 (260)	972 (256)
		CS stretch								
	$v_3(A')$	HSC bend +	832 (151)	796 (147)	825 (163)	791 (153)	829 (155)	793 (151)	661 (70)	639 (68)
		CS stretch								
	$v_4(A')$	(H)SC	513 (47)	482 (49)	503 (45)	473 (47)	506 (46)	475 (49)	507 (35)	477 (34)
		stretch								
	$v_5(A')$	SCS bend	284 (13)	276 (16)	281 (12)	274 (15)	279 (12)	272 (15)	262 (10)	257 (12)
	$\nu_6(A'')$	SH torsion	528 (0.0)	500 (0.1)	525 (0.0)	497 (0.1)	527 (0.0)	499 (0.1)	417 (0.4)	402 (0.4)

Table S9 Vibrational wavenumbers (in cm⁻¹) and IR intensities of *t*-HSCS⁻ and *c*-HSCS⁻ isomers and their ¹³C-, ³⁴S- and D-isotopic variants calculated with the B3LYP/aug-cc-pVTZ method

^{*a*} Infrared intensities (in km mol⁻¹) are shown in parentheses.

		HC(S)SH ⁻		$H^{13}C(S)SH^{-}$		$HC(^{34}S)^{34}SH^{-}$		DC(S)SH ⁻	
Mode	Description	Harmonic	Anharmonic	Harmonic	Anharmonic	Harmonic	Anharmonic	Harmonic	Anharmonic
ν_1	CH stretch	3103 (36) ^a	2950 (53) ^a	3094 (36) ^a	2942 (54) ^a	3103 (36) ^a	2951 (53) ^a	2283 (15) ^a	2203 (22) ^a
v_2	SH stretch	2384 (445)	2144 (540)	2384 (445)	2144 (540)	2382 (445)	2142 (539)	1713 (226)	1594 (252)
v_3	HCS deform	1211 (33)	1188 (21)	1208 (30)	1182 (22)	1211 (33)	1186 (25)	821 (10)	807 (11)
ν_4	C=S stretch	912 (56)	888 (63)	888 (35)	865 (52)	905 (52)	882 (60)	960 (89)	941 (76)
v_5	CSH deform	873 (60)	841 (61)	867 (81)	837 (72)	872 (61)	841 (61)	679 (21)	661 (19)
ν_6	C–S stretch	632 (9.0)	644 (14)	618 (7.9)	636 (13)	626 (9.1)	642 (14)	589 (15)	593 (13)
ν_7	oop CH bend	391 (42)	323 (22)	387 (41)	323 (22)	390 (43)	324 (23)	323 (16)	287 (4.5)
ν_8	SCS bend	288 (8.7)	278 (7.1)	286 (8.7)	277 (6.8)	282 (8.1)	273 (6.1)	271 (13)	258 (17)
V9	SH torsion	184 (3.9)	41 (2.9)	183 (3.8)	39 (2.8)	183 (3.8)	41 (2.9)	139 (3.2)	75 (3.1)

Table S10 Vibrational wavenumbers (in cm⁻¹) and IR intensities of HC(S)SH⁻ and its ¹³C-, ³⁴S- and D-isotopic variants calculated with the B3LYP/aug-cc-pVTZ method

^{*a*} Infrared intensities (in km mol⁻¹) are shown in parentheses.

Mode (sym.)	Description	Harmonic	Anharmonic	
$\mathbf{v}_{1}\left(A_{1} ight)$	in-phase SH stretch	2353 (152) ^a	2145 (165) ^a	
$v_2(A_1)$	in-phase in-plane SH bend	986 (28)	944 (24)	
$v_{3}(A_{1})$	sym SCS stretch	637 (14)	617 (14)	
$v_4(A_1)$	SCS bend	285 (0.2)	265 (0.4)	
$v_5(A_2)$	out-of-phase out-of-plane SH bend	591 (0.0)	550 (0.0)	
$v_6(B_1)$	in-phase out-of-plane SH bend	535 (3.2)	506 (3.0)	
$v_7(B_2)$	in-phase out-of-plane SH stretch	2366 (23)	2160 (29)	
$v_8(B_2)$	SCS asym stretch	1052 (102)	1020 (91)	
$v_{9}(B_{2})$	out-of-phase in-plane SH bend	931 (7.5)	884 (9.2)	

Table S11 Vibrational wavenumbers (in cm⁻¹) and IR intensities of HSCSH calculated with theB3LYP/aug-cc-pVTZ method

^{*a*} Infrared intensities (in km mol⁻¹) are shown in parentheses.

Fig. S1 Geometries of (a) *t*-HSCS, (b) *c*-HSCS, and (c) HCS_2 optimized with the B3LYP/aug-cc-pVTZ method. Geometric parameters obtained with the CCSD(T)/aug-cc-pVTZ method are shown in parentheses for comparison. Bond lengths are in Å.

Fig. S2 Potential-energy diagram of the reactions H + *t*-HSCS and H + *c*-HSCS calculated with the CCSD(T)/aug-cc-pVTZ method. The ZPVEs were corrected using harmonic wavenumbers predicted with the same method.

Fig. S3 Geometries of (a) HCS_2^- , (b) *t*-HSCS⁻, and (c) *c*-HSCS⁻ optimized with the B3LYP/aug-cc-pVTZ method. Bond lengths are in Å.

Fig. S4 Potential-energy diagram of the reaction $H + CS_2^-$ calculated with the B3LYP/aug-cc-pVTZ method. The ZPVEs were corrected using harmonic wavenumbers predicted with the same method.

Fig. S5 Partial infrared spectra of experiments with electron bombardment of $CS_2/p-H_2$ in region 3300–2600 cm⁻¹. (a) IR spectrum of a mixture of $CS_2/p-H_2$ (1/2000) bombarded with electrons during deposition at 3.2 K for 7 h; the spectral features of CS_2 were stripped using the IR spectrum of $CS_2/p-H_2$ (1/2000) mixture deposited without electron bombardment. (b) Difference spectrum after maintaining the matrix in darkness for 12 h. (c) Difference spectrum after subsequent irradiation at 373 nm. (d) Difference spectrum after further irradiation at 254 nm. In (b)–(d), lines pointing upward indicate production and those pointing downward indicate destruction in each experimental step. A line at 2875.7 cm⁻¹ (marked as B⁻) is assigned to the CH-stretching (v₁) mode of HCS₂⁻ and a line at 2967.0 cm⁻¹ is assigned to the CH-stretching (v₁) mode of H₂CS.

Fig. S6 Comparison of experimental spectrum of an electron-bombarded $CS_2/p-H_2$ matrix with those simulated for possible candidates. (a) Difference spectrum after irradiation at 373 nm; taken from Fig. 3(c) and inverted. Lines at 1278.3, 1231.3, 943.1, and 632.4 cm⁻¹ are highlighted by pink color and lines at 2312.7 and 889.0 cm⁻¹ are highlighted by green color. (b) Reported spectrum of *t*-HSCS in an Ar matrix, represented with stick spectra; taken from R. B. Bohn, D. Brabson, and L. Andrews, *J. Phys. Chem.*, 1982, **96**, 1582–1589. A pair of lines 1275.2 and 1227.8 cm⁻¹ originate from Fermi resonance (marked as F.R.). Simulated stick spectra of (c) *t*-HSCS, (d) *c*-HSCS, and (e) HCS₂ according to anharmonic wavenumbers and IR intensities predicted with the B3LYP/aug-cc-pVTZ method.