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SI. DFT DETAILS

A. LCAO methods: SIESTA

SIESTA calculations were performed using the
exchange and correlation potentials with the
generalized gradient approximation (GGA) in
Perdew-Burke-Ernzenhof form.1 We used an electronic
temperature of 25 meV and a mesh cutoff of 250
Ry for all the calculations. The atomic cores were
described using nonlocal norm-conserving relativistic
Troullier-Martins2 pseudopotentials with non-linear
core corrections factorized in the Kleynman-Bylander
form. The pseudopotentials were tested to ensure that
they accurately reproduce the eigenvalues of different
excited states of a bare atom. We tested the cobalt
pseudopotential against the bulk cobalt. We use the
4s13d8 valence configuration, and found that the ground
state was the hcp structure, which had a stability of
0.025 eV/atom greater than that of the fcc structure.
For the hcp structure, the first neighbor distance was
2.54 Å and the magnetic moment per atom was 1.64
µB , in good agreement with experimental results.3 The
cobalt pseudopotential was described in detail and used
to study Co13 clusters adsorbed onto graphene in a
previous study.4 The basis sets for cobalt, hydrogen, and
carbon were the double-polarized basis sets identified in
previous studies.

Geometric relaxations used conjugate gradient
structure optimization. The hydrogen atoms of the
benzene rings made it necessary to impose small
convergence thresholds on forces of the order of 10−3

Ry/bohr ≈ 2.57 × 10−3 eV/Å. We found that imposing
less strict convergence conditions over both the energies
and the forces may erroneously lead to deformed
structures. In each case, a single Γ-point was chosen for
the calculations and 15 Å of empty space was added to
avoid interactions between nearest-neighbors cells.

∗Corresponding author: sgkgosaj@ehu.eus

B. Plane-waves methods: Quantum ESPRESSO
and VASP

Plane-wave methods such as Quantum ESPRESSO5

and VASP6,7 were used. Self-consistent calculations
were performed very accurately using a plane-wave
kinetic energy cutoff of 80 Ry. As in the SIESTA
calculations, the generalized gradient approximation
in exchange-correlation was in Perdew-Burke-Ernzerhof
(PBE)1 form. Norm-conserving Troullier-Martins
pseudopotentials2 were used in Quantum ESPRESSO,
and a projector augmented wave potential construction
was used in VASP. All the atoms were allowed to relax
by conjugate gradients until the forces converged, with a
tolerance of 10−4 eV/Å. We then checked that the relaxed
geometries reproduced the SIESTA results.

C. Full potential methods: ELK

An all-electron full-potential linearised
augmented-plane wave (FP-LAPW) were performed
using the ELK code. The electronic exchange-correlation
potential was treated within the local spin density
approximation (LSDA)8 to avoid gradients effects of the
generalized gradient approximation in the non-collinear
calculations. Wavefunctions in the interstitial density
and potential were expanded into plane waves with a
wavevector cutoff of kmax = 15/RCo, where RCo ≈ 1.16
Å is the muffin-tin radius of cobalt.

D. Geometry

The Cartesian coordinates of the Co3Bz3 optimized
structure shown in Figure 1 of the main text are
presented in table S1.
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TABLE S1: Cartesian coordinates (in Å) of the Co3Bz3
optimized structure.

Co 0.00000 0.00000 0.00000
Co 12.98486 1.19078 14.99998
Co 12.98452 13.81123 14.99992
C 1.55469 14.99907 1.44195
C 1.54217 1.24169 0.72072
C 1.54216 1.24161 14.27903
C 1.55466 14.99890 13.55797
C 1.54196 13.75634 14.27919
C 1.54197 13.75643 0.72086
C 12.15778 2.52712 1.44058
C 11.11924 1.83880 0.72069
C 11.11931 1.83880 14.27908
C 12.15772 2.52700 13.55916
C 13.21217 3.18377 14.28029
C 13.21210 3.18376 0.71938
C 12.15760 12.47503 1.44053
C 13.21213 11.81836 0.71930
C 13.21203 11.81847 14.28020
C 12.15772 12.47507 13.55908
C 11.11912 13.16336 14.27900
C 11.11922 13.16326 0.72064
H 1.50811 14.99971 2.55134
H 1.49666 2.20399 1.27342
H 1.49662 2.20391 13.72634
H 1.50803 14.99946 12.44859
H 1.49626 12.79453 13.72609
H 1.49629 12.79467 1.27409
H 12.18057 2.49043 2.55059
H 10.33145 1.28879 1.27683
H 10.33141 1.28870 13.72304
H 12.18058 2.49030 12.44919
H 14.04625 3.66264 13.72513
H 14.04622 3.66268 1.27462
H 12.18051 12.51164 2.55054
H 14.04618 11.33955 1.27454
H 14.04626 11.33958 13.72506
H 12.18049 12.51183 12.44910
H 10.33133 13.71341 13.72299
H 10.33135 13.71333 1.27680

SII. SPIN HAMILTONIAN

A. Local spins and symmetry arguments

The DFT results indicated that the energy levels
corresponding to the d-orbitals of the cobalt atoms in
a CoBz cluster split in two, with the lowest orbital
triplet almost fully occupied and a half-occupied excited
doublet. Thus, the filling of the levels following the
Hund’s rule leads to a spin S = 3/2. Although the
degeneracy of the lowest orbital triplet is partially broken
due to the new crystal field in the Co3Bz3 cluster, the
qualitative filling is essentially conserved. Consequently,
we assumed later that each cobalt behaves as a S = 3/2
spin. This spin is also compatible with the 4F ground
state observed in the gas phase.9

In order to include the local magnetic anisotropy,

we made the following symmetry considerations. An
isolated CoBz unit has C6v symmetry. The local spin
Hamiltonian compatible with this symmetry can be
written in terms of the (tesseral tensor) Stevens operators

Ôq
k (S) as10

Hi =
∑

k=2,4,6

k∑
q=−k

Bq
kÔ

q
k (Si) , (S1)

where Bq
k are real coefficients. Ôq

k (S) are in turn linear
combinations of spin operator components. The lowest
order non-isotropic term corresponds to the operator
Ô0

2 ∝ (Szi
i )2, which is the uniaxial term used in this

work. Higher (even) powers of Szi
i do not introduce

any qualitative change to the energy spectrum and they
can be thought as a renormalized D-value, hence we
neglected them. All these terms commute with Szi

i ,
and thus, they do not introduce mixing between the
eigenstates of Szi

i . Importantly, the lowest transverse
terms compatible with the C6v symmetry of CoBz

involves the sixth power of the ladder operator,
(
S±i
)6

.
They therefore do not contribute to the spectrum of a
spin S ≤ 5/2, so we discarded them.

B. Spin Hamiltonian parameters

As stated in the main text, the spin Hamiltonian Eq.
(1) contains three fitting parameters, J , J ′ and D, for
a given local spin S. Herein, we described in detail the
derivation of the optimal parameters that best match the
information provided by the DFT calculations.

The electronic structure calculations of a single CoBz
molecule gave an energy difference of 8.2 meV between
configurations with the magnetization out of plane
(lowest energy) and in-plane, suggesting that the easy
axis would be out of plane with D ≈ −4.1 meV for
S = 3/2. The DFT results for the CoBz complex show
that changing the magnetization orientation along the
benzene plane did not significantly change the energy
of the complex, in good agreement with our symmetry
arguments. We found that the benzene rings are not
deformed appreciably when a Co3Bz3 cluster is formed,
so it may be tempting to use the local anisotropy of
each CoBz unit. However, this option was strongly
discouraged by the DFT results. First, the distances
between the cobalt atoms (2.34 Å) were of the same order
than the distance between a cobalt atom and the closest
carbon, approximately 2 Å. Second, the charge of the
cobalt ions in a CoBz and the Co3Bz3 cluster differ by
half an electron. Third, the distances between cobalt
atoms and the closest benzene plane changes by as much
as 9%.

The most important characteristics to reproduce from
the DFT results, shown in Fig. (2)

• a ground state with magnetization in the cobalt
atom plane,
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FIG. S1: (Color online) Excitation energies from the ground
state vs. J/|D| for three different J/J ′ ratios. ~ω1,0 (black
line) is identified with the 0.25 meV non-collinear excitation
in Fig. (2) ~ω2,0 (blue line) with the 22 meV excitation, and
~ω3,0 (green line) with the antiferromagnetic configuration at
72 meV.

• a first excitation at ∆1 ∼ 0.2 meV, with in-plane
magnetization,

• a second excitation at ∆2 ∼ 22 meV (in-plane
magnetization), and

• a third excitation at ∆3 ∼ 72 meV with
out-of-plane magnetization.

Our approach to set the three parameters consisted
of the following steps. First, for three different J/J ′

scenarios, we looked at the qualitative behavior of
the energy spectra with the J/|D| ratio between the
limits of the isolated CoBz units (J/|D| = 0), and
the isotropic cluster (J � |D|). Crucially, the
magnetic configurations resulting from the non-collinear
calculations indicated the dominance of spin-exchange
interactions over anisotropy, so the most natural scenario
corresponded to J & |D|. The excitation energies ~ωN,0

from the ground state are plotted against J/|D| for
three different J/J ′ values in Fig. S1. We associated
the first excitation with the DFT electronic state at
0.2 meV above the ground state. The second energy
level was ascribed to the configurations found 22.2 meV
above the ground state. Thus, we choose the parameters
such that ω1,0/ω2,0 = ∆1/∆2 ≈ 0.01 while keeping
the gap ~ω2,0 as large as possible in terms of D to
avoid unrealistically l arge anisotropy barriers. The third
magnetic configuration at 72 meV, identified from the
DFT results as an AFM configuration with out-of-plane
magnetization, was taken as the third excited state of the
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FIG. S2: (Color online) Excitation energies (gray lines,
left axis) from the ground state vs. the ratio J/J ′ for
three different ratios J/|D|. The ratios ω1,0/ω2,0 and
ω3,0/ω2,0 (right axis) are plotted as thick blue and black lines
respectively. These ratios approach the DFT results of Fig. 2
when J/J ′ = 2 for J/|D| = 5.

model. Comparing the energy spectra shown in Fig. (2)
and Fig. S1, we observe that the first two conditions are
quantitatively satisfied for J/|D| ≈ 2.5 in the asymmetric
case with J/J ′ ≈ 0.5 or for J/|D| ∈ [2.5, 6] with
J/J ′ = 2. The symmetric configuration J = J ′ did not
provide a qualitative agreement for any J/|D| ratio.

A more quantitative picture is obtained by inspection
of the excitation spectrum versus J/J ′, shown in Fig. S2.
The ω1,0/ω2,0 and ω3,0/ω2,0 ratios were plotted versus
J/J ′ for three different values of J/|D|, with the ideal
ratios close to 0 and 3.3, respectively. For reference, the
corresponding excitation spectra are plotted in grey. The
best agreement is found for J/J ′ ≈ 0.47 and, especially,
for J/J ′ ≈ 2. Again, the symmetric case (J = J ′) was
far from the ideal ratios for any J/|D| in the considered
range of parameters.

Summing up, optimal agreement with the DFT results
was found for (D, J, J ′) = (−12.64, 63.2, 31.6) meV
and (D, J, J ′) = (−12.64, 63.2, 134) meV. These values
are higher than those typically found within SMMs.
However, the cobalt centers in the Co3Bz3 cluster are
much closer, so a direct exchange mechanism is possible.
Thus, it seems clear that both local magnetic anisotropy
due to the benzene rings and the direct-exchange between
the local moments associated to the Co atoms plays a
crucial role.
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C. Connection to experiments

Before trying to connect to an specific measurement,
it is worth looking at the energy scales involved. If
we denoted the excitation energies from the ground
state to the first and second excited states as ~ω1,0

and ~ω2,0 respectively, and introducing the temperature
TM = ~ωM,0/kB , magnetic field BM = ~ωM,0/(gµB),
and frequency fM = 2πωM,0, we got the following energy
scales at zero external field: ~ω1,0 ∼ 0.2 meV (T1 ∼ 2 K,
B1 ∼ 2 T, and f1 ∼ 50 GHz), and ~ω2,0 ∼ 22 meV
(T2 ∼ 250 K, B2 ∼ 190 T, and f2 ∼ 5 THz). This had
the following consequences for the possible experimental
observation. Static measurements of the susceptibility
may provide significant information about the lowest
energy excitation for T . 2 K. Furthermore, for T close
to room temperature there may be other excitations
not included here, like phonons. We had not found
significant changes of the susceptibility with temperature
or magnetic fields below 10 T. ac measurements of
the dynamical susceptibility are also commonly used to
extract additional magnetic information of SMMs, but
the frequency range is limited to f ∈ [1 Hz− 0.1 MHz],11

clearly outside the energy range of interest. High dc-field
EPR measurements may provide an accurate spectral
information. In fact, for the Bdc = 10.2 T J-band, the
electron spin resonance is found around 285 GHz.12 For
such an applied external field applied out of the Co’s
plane, ~ω1,0 ∼ 1.1 meV and ~ω2,0 ∼ 1.2 meV (275− 286
GHz), within the range of experimental frequencies.

D. Analysis of the EPR signal

EPR experiments apply a fixed dc field along a
given direction, which we defined as the quantization

axis z, and a small perpendicular ac field ~Bac(t) =
~Bac sinωt, along the x-axis. For the Co-Bz molecule,
the most convenient set-up corresponds to the J-band
(Bdc = 10.2 T) with frequencies 2πω ≈ 285 GHz.
We used time dependent perturbation theory because
the perpendicular ac field is much smaller, with typical
intensities of the order of 1 G.

The absorbed power is given as the variation of the
average energy 〈〈H(t)〉〉 = Tr[ρ̂(t)Ĥ(t)] with time, where
ρ̂(t) is the density matrix. We here assumed a coherent
dynamics. We used an interaction picture with respect

to the term H ′(t) = gµb
~Bac · ~ST sinωt and a first order

perturbative expansion for the density matrix operator.
Thus, the instantaneous power was given by

W (t) ≡ d〈〈H(t)〉〉
dt

≈ ωγBac cosωt
∑
N

PNS
x
N,N

+
ωγ2B2

ac

~2
∑
NM

|Sx
NM |

2
(PM − PN )

×
[
cos tω sin tωNM +

ωNM

ω
(cos tωNM sin tω − sin 2tω)

]
,

FIG. S3: (Color online) Contour plot of the on-resonant EPR

signal, |B̂ac · ~S1,0|2(P1−P0), versus the angle θ formed by the

normal to the Co’s plane and the dc magnetic field (B̂ac =
~Bac/| ~Bac| ). The ac field is parallel to one of the easy axis of
atom 1 in Eq. (1)].

(S2)

where Sx
NM =

∑
l〈N |Sx

l |M〉, γ = gµB is the
gyromagnetic ratio, and PM denotes the thermal
equilibrium occupation of the energy level M .

There are however two considerations to be made in
order to connect the absorbed power W (t) with the
EPR signal. First, the absorption signal of the EPR
measurement corresponds to the average of instantaneous
power over a measurement time τ � 2π/ω. Second,
the coupling of the spin system with the environment
induces a dissipative dynamics. When two energy levels
are close to resonance for a given frequency ω, i.e.,
|ω − ωNM |/ω � 1, the incoherent dynamics introduces
two new time scales, the longitudinal or relaxation time
T1 and the transversal or decoherence time T2.10 These
two time scales determine the line-shape of the EPR
absorption spectra and, in particular, the width of the
resonances, given essentially by T−12 .

When W (t) is averaged over a long period of time τ �
1/ω, the first term cancels. For a frequency window |ω−
ωNM |T2 � 1, the steady-state absorbed power is then
proportional to γ2B2

ac|Sx
N,M |2(PN−PM ). The incoherent

dynamics modifies the time dependence in the last part
of Eq. (S2) which, in the frequency domain, leads to a
finite resonant amplitude and a finite frequency width.
We approximated this frequency dependence using the
collision broadened profile of Van Vleck and Weisskopf
(1945),10

W̄ (ω) =
γ2B2

ac

~2
|Sx

NM |
2

(PM − PN )ω2f(ω, ωNM ), (S3)
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where f(ω, ωNM ) takes the form

1

π

[
T−12

(ω − ωNM )2 + T−22

+
T−12

(ω + ωNM )2 + T−22

]
.

However, we should keep in mind that this EPR line

shape does not account for saturation effects and the
associated temperature increment, which for a typical
ac field of 0.1 G occurs for longitudinal relaxation time
T1 & 1 µs.
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