Electronic Supplementary Information (ESI) for

Enhanced self-assembly for the solubilization of cholesterol in molecular solvent/ionic liquid mixtures

Fig. S1 WAXD patterns of the *n*-heptane/ $[P_{4444}][C_{15}H_{31}COO]$ mixture with a fixed cholesterol concentration of 0.40 as *n*-heptane's concentration from 5 wt% to 80 wt% at ambient temperature.

Fig. S2 POM images of the *n*-heptane/ $[P_{4444}][C_{15}H_{31}COO]$ mixture with a fixed cholesterol concentration of 0.40 as *n*-heptane's concentration from 5 wt% to 80 wt% at ambient temperature. (a) 5 wt%; (b) 10 wt%; (c) 20 wt%; (d) 80 wt%. The scale bar is presented as marked above.

Fig. S3 POM images of the DMSO/ $[P_{4444}][C_{15}H_{31}COO]$ (10 wt%) (a), methanol/ $[P_{4444}][C_{15}H_{31}COO]$ (15 wt%) (b), and EA/ $[P_{4444}][C_{15}H_{31}COO]$ (40 wt%) (c) mixtures with a fixed cholesterol concentration of 0.40 at ambient temperature. The scale bar is presented as marked above. (Note: the temperature in (a) is 35°C as the solubility is less than 0.40 at ambient temperature.)

Fig. S4 WAXD patterns (from top to bottom) of the DMSO/ $[P_{4444}][C_{15}H_{31}COO]$ (10 wt%) (blue), methanol/ $[P_{4444}][C_{15}H_{31}COO]$ (15 wt%) (cyan), EA/ $[P_{4444}][C_{15}H_{31}COO]$ (40 wt%) (orange), *n*-heptane / $[P_{4444}][C_{15}H_{31}COO]$ (40 wt%) (green), methanol/ $[P_{4444}][CH_{3}COO]$ (15 wt%) (violet), and EA/ $[P_{4444}][CH_{3}COO]$ (40 wt%) (red), mixtures with a cholesterol concentration of 0.40 for $[P_{4444}][C_{15}H_{31}COO]$ systems and saturated cholesterol for $[P_{4444}][CH_{3}COO]$ systems at ambient temperature.

Fig. S5 IR spectrum of cholesterol and cholesterol dissolved in *n*-heptane/ $[P_{4444}][C_{15}H_{31}COO]$ with *n*-heptane's concentration from 0 to 80 wt% at ambient temperature.

Fig. S6 IR spectrum of cholesterol (blue line) and cholesterol dissolved in pure $[P_{4444}][C_{15}H_{31}COO]$ (red line), DMSO/ $[P_{4444}][C_{15}H_{31}COO]$ (10 wt%) (green line), methanol/ $[P_{4444}][C_{15}H_{31}COO]$ (15 wt%) (magenta line), EA/ $[P_{4444}][C_{15}H_{31}COO]$ (40 wt%) (cyan line), and *n*-heptane/ $[P_{4444}][C_{15}H_{31}COO]$ (black line) respectively, at ambient temperature.

Fig. S7 IR spectrum of cholesterol (blue line) and cholesterol dissolved in methanol/ $[P_{4444}][CH_3COO]$ (15 wt%) (red line), EA/ $[P_{4444}][CH_3COO]$ (50 wt%) (cyan line), methanol/ $[P_{4444}][C_{15}H_{31}COO]$ (15 wt%) (magenta line), and EA/ $[P_{4444}][C_{15}H_{31}COO]$ (40 wt%) (green line) respectively, at ambient temperature.

Molecular structure of Cholesterol	$HO = \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{5} + \frac{1}{6} + \frac{1}{5} +$			
Mixtures	$\Delta\delta = \delta(\text{complex}) - \delta(\text{free}) / (\text{ppm})$			
	H2	H3	H4	Н6
<i>n</i> -heptane/[P ₄₄₄₄][C ₁₅ H ₃₁ COO] (20 wt%)	-0.028	-0.03	-0.052	-0.029
<i>n</i> -heptane/[P ₄₄₄₄][C ₁₅ H ₃₁ COO] (80 wt%)	-0.023	-0.023	-0.036	-0.023
EA/[P ₄₄₄₄][C ₁₅ H ₃₁ COO] (40 wt%)	-0.027	-0.032	-0.051	-0.027
DMSO/[P ₄₄₄₄][C ₁₅ H ₃₁ COO] (10 wt%)	-0.029	-0.034	-0.052	-0.03
methanol/[P ₄₄₄₄][C ₁₅ H ₃₁ COO] (15 wt%)	-0.028	-0.033	-0.054	-0.03

Table S1 The molecular structure of cholesterol and ¹H NMR spectrum shift of cholesterol in molecularsolvent/[P_{4444}][$C_{15}H_{31}$ COO] mixtures with a fixed cholesterol concentration of 0.40