## **Supporting Information**

### Crystal growth: an anisotropic mass transfer process at

## interface

Congting Sun and Dongfeng Xue\*

State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of

Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China \*Corresponding author. E-mail: <u>dongfeng@ciac.ac.cn</u>

Application of Equation (17) to calculate the anisotropic growth rates can help use to obtain the anisotropic growth geometry for the single crystal. As shown in Figure S1, thermodynamic morphologies of rutile-TiO<sub>2</sub>, anatase-TiO<sub>2</sub>, and brookite-TiO<sub>2</sub> have been successfully predicted.



Fig. S1 Crystallographic structures and thermodynamic morphologies of TiO<sub>2</sub> single crystals. (a) Rutile-TiO<sub>2</sub>, (b) Anatase-TiO<sub>2</sub>, (c) Brookite-TiO<sub>2</sub>.

| Crystal growth model         | Model description                                                                                                                                                    | Characteristics                                                                                                                                                                                                                                   |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gibbs-Wulff model            | The equilibrium shape of single crystal growth is constructed by the minimum surface energy. <sup>S1</sup>                                                           | By calculating the surface energy<br>under different surface conditions,<br>several morphologies can be<br>obtained. However, the crystal<br>surface is not growth active. <sup>S2,S3</sup>                                                       |
| BFDH theory                  | Crystal growth rate is<br>proportional to $1/d_{hkl}$ , where $d_{hkl}$ ,<br>is the interplanar distance of<br>$\{hkl\}$ crystalline faces. <sup>S4</sup>            | Only one equilibrium shape of single crystal will obtained by this model.                                                                                                                                                                         |
| Attachment energy (AE) model | Crystal growth rate is proportional to its attachment energy. <sup>S5</sup>                                                                                          | Morphology of organic single crystals will obtained by this model.                                                                                                                                                                                |
| BCF theory                   | The curvature of the spiral near<br>its origin was related to the<br>spacing of successive turns and<br>the level of supersaturation. <sup>S6</sup>                  | Some critical physical parameters are assumed without experiential values.                                                                                                                                                                        |
| Surface area limited model   | It combines surface diffusion,<br>step growth rate and surface site<br>availability to describe<br>anisotropic coarsening of<br>faceted nanoparticles. <sup>87</sup> | The effective number of sites<br>available for monomers to adsorb<br>determines nanoparticle shape<br>evolution.                                                                                                                                  |
| Present model                | The chemical bonding<br>architecture is used to regulate<br>the mass transfer process of a<br>compound in a straightforward<br>manner.                               | Multiple morphologies that may be<br>exhibited for a single crystal by<br>identifying all possible chemical<br>bonding architectures at [uvw]<br>growing interface, enclosing the<br>origin of various geometries of a<br>multicomponent crystal. |

# Table S1 Different crystal growth models

### References

S1 A. S. Barnard and L. A. Curtiss, Nano Lett., 2005, 5, 1261–1266.

S2 N. Y. Dzade, A. Roldan and N. H. de Leeuw, Phys. Chem. Chem. Phys., 2016, 18,

32007-32020.

- S3 I. A. Suleiman, M. W. Radny, M. J. Gladys, P. V. Smith, J. C. Mackie, E. M.
  Kennedy and B. Z. Dlugogorskid, *Phys. Chem. Chem. Phys.*, 2015, 17, 7038–7045.
  S4 F. Punzo, *J. Cryst. Growth*, 2013, 1032, 147–154.
- S5 P. Hartman and P. Bennema, J. Cryst. Growth, 1980, 49, 145–156.
- S6 W. K. Burton, N. Cabrera and F. C. Frank, Phil. Trans. A, 1951, 243, 299-358.
- S7 A. Seyed-Razavi, I. K. Snook and A. S. Barnard, Cryst. Growth Des., 2011, 11, 158–165.