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Modelling the influence of salt concentration on polymerization.

The general equation for the formation of oligomers and polymers formed by C and B has been 
described elsewhere.[31] Briefly, the expression for stepwise formation constants for complexes CB, 
CB2 and C2B, K1, K2 and K3 is 

(S1)
𝐾1 =

[𝐶𝐵]
[𝐶][𝐵]

(S2)
𝐾2 =

[𝐶𝐵2]

[𝐶𝐵][𝐵]

(S3)
𝐾3 =

[𝐶2𝐵]

[𝐶𝐵][𝐶]

In the current paper, the complex CB is re-named monomer M. The oligomerization constant of M is

(S4)
𝐾𝑜=

[𝑀𝑛]

[𝑀𝑛 ‒ 1][𝑀]

Which can be written as a function of the stepwise binding constants:

(S5)
𝐾𝑜=

4𝐾2𝐾3
𝐾1

The dimerization of the polymer Mn leads to the double stranded polymer (M2)n, which in the 
current paper is termed Dn. The dimerization depends on the lateral association constant per unit 
repeat, Kl, as follows:

(S6)
𝐾𝑙

𝑛𝐸𝑀𝑛 ‒ 1 =
[𝐷𝑛]

[𝑀𝑛]
2

The total concentration of C and B, [C]0 and [B]0 can be written as

(S7)
[𝐶]0 = [𝐶] + [𝐶𝐵2] + 2[𝐶2𝐵] +

∞

∑
𝑛= 1

𝑛[𝑀𝑛] +
∞

∑
𝑛= 1

2𝑛[𝐷𝑛]

(S8)
[𝐵]0 = [𝐵] + 2[𝐶𝐵2] + [𝐶2𝐵] +

∞

∑
𝑛= 1

𝑛[𝑀𝑛] +
∞

∑
𝑛= 1

2𝑛[𝐷𝑛]
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In this work we are interested in relating the concentration of salt with the formation of the 
polymer. For simplicity, we have carried out the polymerization experiments in conditions where the 
total concentration of C equals that of B. With K1 much larger than K2 and K3, we can assume that the 
concentration of CB2 and C2B is unimportant in these conditions, thus:

(S9)
[𝐶]0 = [𝐶] +

∞

∑
𝑛= 1

𝑛[𝑀𝑛] +
∞

∑
𝑛= 1

2𝑛[𝐷𝑛]

(S10)
[𝐵]0 = [𝐵] +

∞

∑
𝑛= 1

𝑛[𝑀𝑛] +
∞

∑
𝑛= 1

2𝑛[𝐷𝑛]

Since [C]0 = [B]0, we have that [C] = [B], and equation (S9) and (S10) are identical.

The concentration C and B building blocks within Mn and Dn can be written as a function of the free 
concentration of C and B as follows:

(S11)

∞

∑
𝑛= 1

𝑛[𝑀𝑛] =
𝐾1[𝐶][𝐵]

(1 ‒ 𝐾𝑜𝐾1[𝐶][𝐵])2

(S12)

∞

∑
𝑛= 1

2𝑛[𝐷𝑛] =
2𝐾𝑙𝐾1

2[𝐶]2[𝐵]2

(1 ‒ 𝐾𝑙𝐸𝑀(𝐾𝑜𝐾1[𝐶][𝐵])
2)2

Substituting in equation S9 we have that

(S13)
[𝐶]0 = [𝐶] +

𝐾1[𝐶][𝐵]

(1 ‒ 𝐾𝑜𝐾1[𝐶][𝐵])2
+

2𝐾𝑙𝐾1
2[𝐶]2[𝐵]2

(1 ‒ 𝐾𝑙𝐸𝑀(𝐾𝑜𝐾1[𝐶][𝐵])
2)2

and since [C] = [B] we have that

(S14)
[𝐶]0 = [𝐶] +

𝐾1[𝐶]
2

(1 ‒ 𝐾𝑜𝐾1[𝐶]
2)2

+
2𝐾𝑙𝐾1

2[𝐶]4

(1 ‒ 𝐾𝑙𝐸𝑀(𝐾𝑜𝐾1[𝐶]
2)2)2

We note the concentration of dimer repeats within the double stranded polymer as [D], so:

(S15)
[𝐷] =

∞

∑
𝑛= 1

𝑛[𝐷𝑛]

Therefore, substituting in equation S12, we have that [D] can be written as

(S16)
[𝐷] =

𝐾𝑙𝐾1
2[𝐶]4

(1 ‒ 𝐾𝑙𝐸𝑀(𝐾𝑜𝐾1[𝐶]
2)2)2

And substituting in equation S14 we have that



(S17)
[𝐶]0 = [𝐶] +

𝐾1[𝐶]
2

(1 ‒ 𝐾𝑜𝐾1[𝐶]
2)2

+ 2[𝐷]

The increase of dimerization constant can be attributed to the binding of countercations to the 
double stranded polymers Dn. Analysis of crystallographic data of the dimer repeating unit allows 
identifying up to 4 binding sites of Na+ (Figure 2C).  Thus, Na+ binds to each of the repeating units D 
to generate complexes of the form NajD with j ≤4. We can assume that the microscopic binding 
affinity of Na+ to each binding site is the same.  The statistical correction factor s that has to be 
multiplied to the microscopic constant for the binding of a ligand to multivalent receptors is

(S18)
𝑠=

𝑛+ 1 ‒ 𝑖
𝑖

Where n is the total number of binding sites and i the number of binding sites occupied after the 
binding event. Since in our system n = 4, the overall formation constant for each of the possible 
complexes can be written as

(S19)
( 𝑖= 𝑗

∏
𝑖= 1

5 ‒ 𝑖
𝑖 )𝐾𝑁𝑎

𝑗=
[𝑁𝑎𝑗𝐷]

[𝐷][𝑁𝑎]𝑗

With j ≤ 4

The lateral association constant per unit repeat in the absence of Na+ is Kl0, and can be written as a 
function of the concentration of repeats in the double stranded polymer, [D], and the concentration 
of repeats in the corresponding single stranded polymer, [S] :

(S20)
𝐾𝑙0𝐸𝑀

𝑛 ‒ 1
𝑛 =

[𝐷]

[𝑆]2

That for EM close to 1 and for n values larger than 10 can be written as

(S21)
𝐾𝑙0=

[𝐷]

[𝑆]2

In the presence of Na+, some of the binding sites in the double stranded polymer will be occupied. 
On the other hand, we assume that the binding of the single stranded oligomer to the cation is much 
weaker and can be disregarded. This assumption is based on the fact that at least 2 and up to 4 
sulphonate groups may interact simultaneously with Na+ in the double stranded polymer while in 
the single stranded polymer only one sulphonate can interact with sodium. The apparent lateral 
association constant per repeat units Kl can be thus written as

(S22)
𝐾𝑙=

[𝐷] +
4

∑
𝑗= 1

[𝑁𝑎𝑗𝐷]

[𝑆]2



Combining equations (S19) and equation (S22) we have:

𝐾𝑙=
[𝐷] + 4𝐾𝑁𝑎[𝐷][𝑁𝑎] + (3/2)𝐾𝑁𝑎

2[𝐷][𝑁𝑎]2 + (2/3)𝐾𝑁𝑎
3[𝐷][𝑁𝑎]3 + (1/4)𝐾𝑁𝑎

4[𝐷][𝑁𝑎]4

[𝑆]2

(S23)

combining with equation (S21) we have:

(S24)
𝐾𝑙= 𝐾𝑙0(1 +

𝑖= 4

∑
𝑖= 1

(
5 ‒ 𝑖
𝑖
)𝐾𝑁𝑎

𝑖[𝑁𝑎]𝑖)

And substituting equation (S24) in equations (S16) we have that

 (S25)

[𝐷] =

𝐾𝑙0(1 +
𝑖= 4

∑
𝑖= 1

(
5 ‒ 𝑖
𝑖
)𝐾𝑁𝑎

𝑖[𝑁𝑎]𝑖)𝐾1
2[𝐶]4

(1 ‒ 𝐾𝑙0𝐸𝑀(1+
𝑖= 4

∑
𝑖= 1

(
5 ‒ 𝑖
𝑖
)𝐾𝑁𝑎

𝑖[𝑁𝑎]𝑖)(𝐾𝑜𝐾1[𝐶]
2)2)2

To calculate KNa, we need to relate the UV data to this constant. Typically, changes in the 
absorbance, related to changes in the relative amount of species in equilibrium, are used to 
determine the constant. The absorbance, however, depends on the absolute concentration of the 
species present. In our experimental design the changes in absorbance are overwhelmingly due to 
the increase in total concentration, rather than the binding events. The changes in the shape of the 
spectrum, on the other hand, are almost exclusively due to those binding events. It is therefore 
more convenient to use a measure of the shape of the spectrum, for example, the ratio of 
absorbance between two fixed wavelengths, to estimate the relative concentrations of species in 
equilibrium and, from it, evaluate the binding parameters.  For convenience, we choose the ratio 
between the absorbance at 460 over the sum of absorbances at 430 and 460 nm, that we call xA,  
that is

(S26)
𝑥𝐴=

𝐴460
𝐴460 + 𝐴430

 At 460 nm, the only specie responsible for the signal is the double stranded polymer.[31] All the 
species contribute to the signal at 430 nm, including the double stranded polymer, single stranded 
oligomer and free C. 430 nm is also the isosbestic point in the formation of single stranded polymers. 
This means that the value of absorbance at this wavelength does not change if the relative amounts 
of free C and single stranded polymer change, and we can therefore combine them in a single specie 
for the purpose of the analysis of the UV data. We call the total concentration of C building block 
within this combined specie [N], that is:

(S27)
[𝑁] = [𝐶] +

𝐾1[𝐶]
2

(1 ‒ 𝐾𝑜𝐾1[𝐶]
2)2



Therefore, the total concentration of C can be written as:

(S28)[𝐶]0 = [𝑁] + [𝐷]

xA can be then written as a function of [D] and [N] as follows:

(S29)
𝑥𝐴=

2[𝐷]𝜀𝐷460
2[𝐷]𝜀𝐷430 + 2[𝐷]𝜀𝐷460 + [𝑁]𝜀𝑀430

Where D430 and D460 are the molar extinction coefficients of building block C within the double 
stranded polymer at 430 and 460 nm, and N430 the extinction coefficient of the combined specie N 
at 430 nm.

We define xD, that is the fraction C within the double stranded polymer over the total concentration 
of C, as:

(S30)
𝑥𝐷=

2[𝐷]
[𝐶]0

Combining equations (S29) and (S30) we have that:

(S31)

𝑥𝐴=
𝜀𝐷460

𝜀𝐷430 + 𝜀𝐷460 +
1 ‒ 𝑥𝐷
𝑥𝐷

𝜀𝑀430

It is possible therefore to determine xD from xA using the appropriately re-arranged version of 
equation (S31):

(S32)
𝑥𝐷=

𝜀𝑅1𝑥𝐴
1 ‒ 𝑥𝐴(1 + 𝜀𝑅2 ‒ 𝜀𝑅3)

Where the values R1, R2 and R3 are:

(S33)
𝜀𝑅1=

𝜀𝑀430
𝜀𝐷460

(S34)
𝜀𝑅2=

𝜀𝐷430
𝜀𝐷460

(S35)
𝜀𝑅3=

𝜀𝑀430
𝜀𝐷460

We used the experimental absorbance data (a representative example of which is shown in 
Supplementary Figure 1A and B) to determine xD (Supplementary Chart 1). The values of extinction 
coefficient used for this calculation where obtained as the average of the values of spectra in the 
absence of oligomers (low concentration of C, B and salt), for N430, and with quantitative formation 
of oligomer (high C and B and high salt concentration) for D430 and D460 (Supplementary Table 1).



Supplementary Chart 1. Values of xA (top panel) for all the samples analysed, and their 
corresponding values of xD (bottom panel) calculated using the parameters in Supplementary Table 
1.

Concentration of Phosphate Buffer (pH 7.2) mM
1.95 3.91 7.81 15.6 31.3 62.5 125 250 500

[Na+] mM
2.93 5.86 11.72 23.4 46.9 93.8 188 375 750

[C] M xA
0.53 -0.002 0.001 0.000 -0.003 0.002 0.001 0.008 0.004 0.159
1.06 0.002 0.005 0.003 0.004 0.003 0.000 0.004 0.045 0.400
2.13 0.006 0.005 0.006 0.006 0.005 0.006 0.239 0.539 0.625
4.26 0.007 0.008 0.007 0.009 0.009 0.015 0.707 0.643 0.665
8.51 0.009 0.009 0.009 0.011 0.010 0.700 0.649 0.709 0.684
17.0 0.014 0.014 0.015 0.016 0.016 0.698 0.658 0.739 0.712
34.0 0.014 0.014 0.013 0.024 0.225 0.616 0.654 0.728 0.722
68.1 0.015 0.015 0.015 0.026 0.604 0.672 0.728 0.761 0.749
136 0.011 0.011 0.011 0.016 0.661 0.681 0.745 0.764 0.760

Concentration of Phosphate Buffer (pH 7.2) mM
1.95 3.91 7.81 15.6 31.3 62.5 125 250 500

[Na+] mM
2.93 5.86 11.72 23.4 46.9 93.8 188 375 750

[C] M xD
0.53 -0.005 0.001 0.000 -0.007 0.004 0.002 0.020 0.011 0.326
1.06 0.004 0.011 0.008 0.010 0.006 0.001 0.011 0.102 0.671
2.13 0.014 0.011 0.014 0.014 0.011 0.015 0.455 0.817 0.895
4.26 0.018 0.019 0.016 0.022 0.020 0.035 0.961 0.910 0.928
8.51 0.022 0.022 0.022 0.026 0.025 0.956 0.915 0.963 0.944
17.0 0.033 0.033 0.036 0.037 0.039 0.955 0.923 0.986 0.965
34.0 0.032 0.033 0.032 0.056 0.434 0.888 0.920 0.978 0.973
68.1 0.037 0.035 0.036 0.061 0.877 0.934 0.978 1.002 0.993
136 0.027 0.026 0.026 0.037 0.925 0.941 0.991 1.004 1.001

Supplementary Table 1. Extinction coefficient values for N and D at 430 and 460 nm, and their 
corresponding ratios. The units are M-1cm-1

N430 N460 D430 D460

0.25 0 0.033 0.10



Supplementary Figure 1 A. Top panel: Spectra of solutions 1:1 of C and B in buffer phosphate 125 
mM, pH 7.2. The concentration of C and B increases exponentially from the darkest trace (0.53 M) 
to lightest trace (136 M). Bottom panel: Spectra of solutions 1:1 of C and B at a concentration 8.51 
M in in buffer phosphate, pH 7.2. The concentration of phosphate increases exponentially from the 
darkest trace (1.95 mM) to lightest trace (500 mM).  B. Changes of the mole fraction of monomer 
within the double stranded polymer, xD, with the concentration of Na+ and the total concentration of 
C (which is equal to that of B). The red spheres are the experimental values of xD calculated from the 
UV spectra. The blue surface is the best fit to the model described by equations (S14), (S16), (S25) 
and (S30).

xD was then fitted to the model defined by equations (S14), (S16), (S25) and (S30), using the program 
Micromath Scientist 3.0 (Supplementary Figure 1). We used the values of K1, Ko and Kl0 previously 
obtained as fixed parameters (i.e., 1.16x106, 8.40x103 and 6.1 M-1 respectively) with EM = 1, in the 
fitting. The fit to the experimental data is for the most part good, returning a value for KNa of 60 M-1. 
However, it is clear that the formation of the double stranded polymer as the salt concentration 
increases is more cooperative than allowed from our model (Supplementary Figure 1B). To improve 
the fitting, we assume that the binding of Na+ is subjected to strong allosteric cooperativity, in which 
only the states with no Na+ or with full binding site occupancy are populated. KNa can thus be written 
as a function of the concentration of Na+ as follows:

(2)
𝐾𝑁𝑎

4 =
[𝑁𝑎4𝐷]

[𝐷][𝑁𝑎]4

Modifying equation (S22) accordingly we have that

(S36)
𝐾𝑙=

[𝐷] + [𝑁𝑎4𝐷]
[𝑆]2

That written as a function of the concentration of Na+ is:

(S37)
𝐾𝑙=

[𝐷] + 𝐾𝑁𝑎
4[𝐷][𝑁𝑎]4

[𝑆]2



And substituting in equation (S21) we have:

(3)𝐾𝑙= 𝐾𝑙0(1 + 𝐾𝑁𝑎
4[𝑁𝑎]4)

Substituting in equation (S14) we have that:

(4)
[𝐶]0 = [𝐶] +

𝐾1[𝐶]
2

(1 ‒ 𝐾𝑜𝐾1[𝐶]
2)2

+
2𝐾𝑙0(1 + 𝐾𝑁𝑎

4[𝑁𝑎]4)𝐾1
2[𝐶]4

(1 ‒ 𝐾𝑙0(1 + 𝐾𝑁𝑎
4[𝑁𝑎]4)𝐸𝑀(𝐾𝑜𝐾1[𝐶]

2)2)2

With:

 (5)
[𝐷] =

𝐾𝑙0(1 + 𝐾𝑁𝑎
4[𝑁𝑎]4)𝐾1

2[𝐶]4

(1 ‒ 𝐾𝑙0(1 + 𝐾𝑁𝑎
4[𝑁𝑎]4)𝐸𝑀(𝐾𝑜𝐾1[𝐶]

2)2)2

We fitted the xD data to the model defined by equations (4) and (5), together with equation (6), 
using the program Micromath Scientist 3.0. This model provides a better fit that is consistent with 
the rapid increase in polymerization extent with the concentration of salt (Figure 3A).

Surface fit representations. 

The program PovRay 3.6 was used to generate the surface fits shown in Figure 3A, 3B and 
Supplementary Figure 1B. For Figure 3A and Supplementary Figure 1B, the experimental data were 
represented as spheres. The data to generate the surface was obtained carrying out a simulation 
with the program Micromath Scientist 3.0, using the parameters obtained from the fitting. Values of 
the concertation of free [C] calculated during the simulation where substituted in equation (7) in 
order to obtain the corresponding values of <N2>. These values where used to generate the surface 
in Figure 3B.

NMR experiments

The formation of large polymers following a nucleation-growth mechanism as the concentration of 
the building blocks increased has been detected by NMR, as described in our earlier work.[31]  Here, 
we show that the increase of the salt concentration has a similar effect on the NMR spectrum: the 
sharp signals assigned to discrete species decrease intensity as the salt concentration increases, 
consistent with a cooperative formation of large polymers that are not visible using typical solution 
NMR.  Changes in the relative intensity of the signals assigned to the beta proton of C and that 
assigned to excess B is consistent with changes in the fraction of double stranded oligomer, xD, as 
predicted by our model (Figure 2B). 

Cooperativity plots

Multistranded polymerization model



For general applicability, the plots were generated for polymers formed by the assembly of a 
monomer M, with M a covalent-linked unit, unlike the CB monomer, which is formed by the 
association of C and B. The equations used are thus somewhat simplified. For the double stranded 
polymer the equations that relate Ko and Kl is obtained by replacing K1[C][B] for the concentration of 
free M in equation (S13):

(S38)
[𝑀]0 =

[𝑀]

(1 ‒ 𝐾𝑜[𝑀])2
+

2𝐾𝑙[𝑀]
2

(1 ‒ 𝐾𝑙𝐸𝑀(𝐾𝑜[𝑀])
2)2

that for polymers with any number of strands m becomes:[31]

(S39)
[𝑀]𝑜=

𝑖=𝑚

∑
𝑖= 1

𝑖𝐾𝑙
𝑖 ‒ 1[𝑀]𝑖

(1 ‒ 𝐾𝑖
𝑜𝐾𝑙

𝑖 ‒ 1𝐸𝑀𝑖 ‒ 1[𝑀]𝑖)2

With the concentration of M in the m stranded polymer, [P], being:

(S40)
[𝑃] =

𝑚𝐾𝑙
𝑚 ‒ 1[𝑀]𝑚

(1 ‒ 𝐾𝑚
𝑜𝐾𝑙

𝑚 ‒ 1𝐸𝑀𝑚 ‒ 1[𝑀]𝑚)2

The fraction of m-stranded polymer, xP, is:

(S41)
𝑥𝑃=

[𝑃]
[𝑀]0

The maximum concentration, [M]max, for a m-stranded polymer is the concentration at which the 
concentration of polymer tends to the infinity, that is, the denominator in equation (S40) tends to 
zero:

(S42)(1 ‒ 𝐾𝑚
𝑜𝐾𝑙

𝑚 ‒ 1𝐸𝑀𝑚 ‒ 1[𝑀]𝑚𝑎𝑥
𝑚)2 = 0

Re-arranging equation (S42) we have that

(S43)
[𝑀]𝑚𝑎𝑥=

(𝐾𝑙𝐸𝑀)
1 ‒ 𝑚
𝑚

𝐾𝑜

The concentration as multiples of [M]max, n[M]max, was then calculated by dividing the total 
monomer concentration by the maximum monomer concentration: 

(S44)
𝑛[𝑀]𝑚𝑎𝑥=

[𝑀]0
[𝑀]𝑚𝑎𝑥

The growth of P with the total concentration of M, [P]/[M]0, was calculated graphically from the 
data of [M]0 and [P] generated in the corresponding simulations. The corresponding plots are shown 
in Figure 5. The corresponding traditional cooperativity plots, that show the mole fraction of 
polymer as a function of the total concentration of monomer, are shown in Supplementary Figure 3. 



Supplementary Figure 3. A. Changes in the mole fraction of polymer over total monomer (xP) with 
the total concentration of monomer, expressed as multiples of the maximum monomer 
concentration, n[M]max, for double stranded polymers with different Kl values.  The values of Kl are 
50 (blue trace), 500 (red trace) and 50000 (green trace) M-1, and infinity (dotted trace). The value of 
Ko is 8400 M-1 in all cases. B. Changes in the fraction of polymer over total monomer (xP) with the 
total concentration of monomer, expressed as multiples of the maximum monomer concentration, 
n[M]max, for polymers with different number of strands m. The number of strands m are 1 (dotted 
line), 2 (green trace), 3 (red trace) and 4 (blue trace). The green, red and blue traces are overlapping.  
Ko is 8400 M-1 and Kl is 50000 M-1 in all cases.

General polymerization model

In the polymerization model commonly used for nucleation growth, two binding constants are 
defined, the nucleation constant Kn and the growth constant Kg, with the cooperativity factor  
defined as the ratio between the constants, i.e.

(8)
𝛼=

𝐾𝑔

𝐾𝑛

Supplementary Figure 4. Schematic representation of the nucleation-growth assembly of a hexa-
stranded polymer that follows an helical assembly path, as an example of a polymer whose 
polymerization requires the assembly of a nucleus containing 6 building blocks.



The total concentration of monomer, [M]0, can be written as the sum of species smaller than the 
nucleus (which we call [M]i, with i < m), and polymers equal or larger than the nucleus (i.e., polymers 
of the form [M]m+n)(Supplementary Figure 4). 

(S45)
[𝑀]0 =

𝑖=𝑚 ‒ 1

∑
𝑖= 1

𝑖[𝑀]𝑖+
𝑛=∞

∑
𝑛= 0

(𝑛+𝑚)[𝑀]𝑛+𝑚

The concentration of polymer with m+n building blocks can be written as:

(S46)[𝑀]𝑚+ 𝑛= 𝐾𝑛
𝑚 ‒ 1𝐾𝑔

𝑛[𝑀]𝑚+ 𝑛

And the total concentration of monomer within the polymer is

(S47)

𝑛=∞

∑
𝑛= 1

(𝑛+𝑚)[𝑀]𝑛+𝑚=
𝑛=∞

∑
𝑛= 0

(𝑛+𝑚)𝐾𝑛
𝑚 ‒ 1𝐾𝑔

𝑛[𝑀]𝑚+ 𝑛

On the other hand the concentration of small assemblies can be written as

(S48)[𝑀]𝑖= 𝐾𝑛
𝑖 ‒ 1[𝑀]𝑖

With i < m

Equation (S47) can be re-arranged as:

𝑛=∞

∑
𝑛= 1

(𝑛+𝑚)[𝑀]𝑛+𝑚=𝑚𝐾𝑛
𝑚 ‒ 1

𝑛=∞

∑
𝑛= 0

𝐾𝑔
𝑛[𝑀]𝑚+ 𝑛+ 𝐾𝑛

𝑚 ‒ 1
𝑛=∞

∑
𝑛= 0

𝑛𝐾𝑔
𝑛[𝑀]𝑚+ 𝑛

(S49)

and furthermore as

𝑛=∞

∑
𝑛= 1

(𝑛+𝑚)[𝑀]𝑛+𝑚=𝑚𝐾𝑛
𝑚 ‒ 1[𝑀]𝑚

𝑛=∞

∑
𝑛= 1

𝐾𝑔
𝑛 ‒ 1[𝑀]𝑛 ‒ 1 + 𝐾𝑛

𝑚 ‒ 1[𝑀]𝑚
𝑛=∞

∑
𝑛= 1

𝑛𝐾𝑔
𝑛 ‒ 1[𝑀]𝑛 ‒ 1

(S50)

Taylor formulae for the relevant convergent series state that, for x < 1:

(S51)

∞

∑
𝑛= 1

𝑛𝑥𝑛 ‒ 1 =
1

(1 ‒ 𝑥)2

(S52)

∞

∑
𝑛= 1

𝑥𝑛 ‒ 1 =
1

1 ‒ 𝑥

Therefore, we have that



(S53)

𝑛=∞

∑
𝑛= 1

(𝑛+𝑚)[𝑀]𝑛+𝑚=
𝑚𝐾𝑛

𝑚 ‒ 1[𝑀]𝑚

1 ‒ 𝐾𝑔[𝑀]
+

𝐾𝑛
𝑚 ‒ 1[𝑀]𝑚

(1 ‒ 𝐾𝑔[𝑀])2

Substituting equation (S48) and (S53) on equation (S45) results in:

(S54)
[𝑀]0 =

𝑖=𝑚 ‒ 1

∑
𝑖= 1

𝑖𝐾𝑛
𝑖 ‒ 1[𝑀]𝑖+

𝑚𝐾𝑛
𝑚 ‒ 1[𝑀]𝑚

1 ‒ 𝐾𝑔[𝑀]
+

𝐾𝑛
𝑚 ‒ 1[𝑀]𝑚

(1 ‒ 𝐾𝑔[𝑀])2

We have defined [P] as the concentration of monomer within the polymers. Substituting in equation 
(S53) we have that for this model, [P] can be written as a function of the free monomer as:

(S55)
[𝑃] =

𝑚𝐾𝑛
𝑚 ‒ 1[𝑀]𝑚

1 ‒ 𝐾𝑔[𝑀]
+

𝐾𝑛
𝑚 ‒ 1[𝑀]𝑚

(1 ‒ 𝐾𝑔[𝑀])2

In this model, [M]max is the concentration at which the concentration at which the denominator in 
the last member of equation (S54) tends to zero. Therefore, we have that  

(S56)
[𝑀]𝑚𝑎𝑥=

1
𝐾𝑔

The concentration as multiples of [M]max, n[M]max, was then calculated by dividing the total 
monomer concentration by the maximum monomer concentration: 

(S44)
𝑛[𝑀]𝑚𝑎𝑥=

[𝑀]0
[𝑀]𝑚𝑎𝑥

The growth of P with the total concentration of M, [P]/[M]0, was calculated graphically from the 
data of [M]0 and [P] generated in the corresponding simulations. The corresponding plots are shown 
in Figure 6, for m = 2 and m = 6. 


