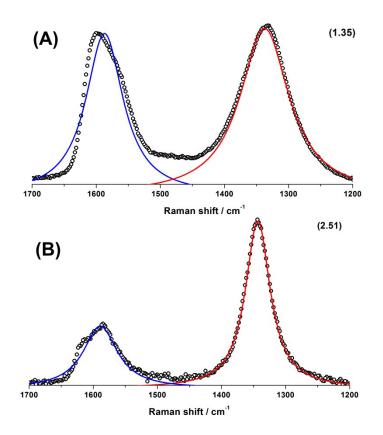

Supplementary information

Improved catalyst for hydrogen evolution reaction in alkaline solutions through the electrochemical formation of nickel-reduced graphene oxide interface


Sanjin J. Gutić¹, Ana S. Dobrota², Mikael Leetmaa³, Natalia V. Skorodumova^{3,4}, Slavko V.
Mentus,^{2,5} Igor A. Pašti^{2*}
¹Department of Chemistry, Faculty of Science, Zmaja od Bosne 33-35, 71000 Sarajevo, Bosnia and Herzegovina
²University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158
Belgrade, Serbia
³Department of Materials Science and Engineering, KTH - Royal Institute of Technology, Brinellvägen 23, 100 44 Stockholm, Sweden
⁴Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
⁵Serbian Academy of Sciences and Arts, Knez Mihajlova 35, 11000 Belgrade, Serbia

*Corresponding author:

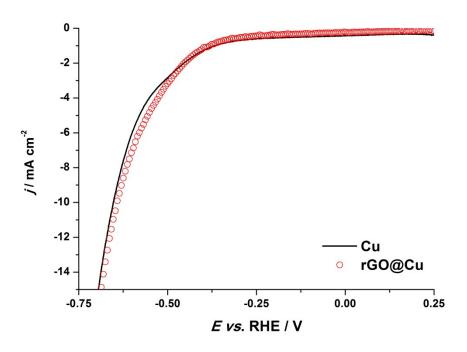

Dr. Igor A. Pašti, associate professor University of Belgrade – Faculty of Physical Chemistry Studentski trg 12-16, 11158 Belgrade, Serbia E-mail: igor@ffh.bg.ac.rs Phone: +381 11 3336 628 Fax: +381 11 2187 133

Figure S1. SEM micrographs of Ni@rGO composites obtained at constant potential (shown in reduced scale in the Fig. 3 in the main text)

Figure S2. Raman spectra of drop-casted GO (A) and rGO obtained at -1.2 V vs. Ag/AgCl (B, the same potential used for the preparation of the composite electrodes) in the solution of Na₂SO₄ without nickel salt. Numbers in parentheses indicate I_D/I_G ratio.

Figure S3. Pseudostationary voltammograms for HER in 1 M KOH at clean Cu surface and rGO@Cu surface. The rGO@Cu electrode was prepared by potentiostatic reduction of GO at -1.2 V vs. Ag/AgCl in Na₂SO₄, in the absence of nickel salt.