Inelastic Neutron Scattering study of Reline:

shedding light on the hydrogen bonding network of deep eutectic solvents

Supporting Material

C. Araujo *^{*a*}, J. A. P. Coutinho ^{*a*}, M. M. Nolasco ^{*a*}, S.F. Parker ^{*b*}, P. J. A. Ribeiro-Claro *^{*a*},

S. Rudić ^b, B. I. G. Soares ^a, P. D. Vaz ^{b,c}

^a CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

^b ISIS Neutron & Muon Source, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, UK

^{*c*} CQB, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal.

* prc@ua.pt ; catarina.araujo@ua.pt

Figure S1. Optimized geometry of the aggregate used to model Reline, with dotted lines evidencing hydrogen bonding sites. This image was rendered using the ChemCraft program (http://www.chemcraftprog.com).

Table S1. Coordinates of reline's model optimized geometry

Ν	2.261656000	-1.120176000	1.554849000	
С	1.884686000	-2.570277000	1.381075000	
Н	0.795557000	-2.631545000	1.318832000	
Н	2.354022000	-2.929988000	0.464392000	
Н	2.254961000	-3.133264000	2.240184000	
С	1.782484000	-0.375613000	0.326072000	
Н	0.695970000	-0.461676000	0.288043000	
Н	2.094478000	0.664398000	0.398277000	
Н	2.244938000	-0.853027000	-0.538266000	
С	3.757755000	-1.008761000	1.654905000	
Н	4.039325000	0.043510000	1.663160000	
Н	4.084301000	-1.502591000	2.572665000	
Н	4.191252000	-1.493624000	0.779641000	
С	1.572938000	-0.617532000	2.823958000	
С	1.937739000	0.779489000	3.329107000	
Н	1.838213000	-1.342620000	3.600849000	
Н	0.498739000	-0.691857000	2.626709000	
Н	1.498365000	0.832744000	4.335020000	
Н	3.021125000	0.896548000	3.453251000	
0	1.405899000	1.835013000	2.558679000	
Н	2.129833000	2.286899000	2.053083000	
Cl	3.421576000	3.016832000	0.643392000	
С	6.243184000	0.805734000	-0.758686000	
0	7.062892000	-0.133275000	-0.859430000	
Ν	4.979846000	0.738012000	-1.268544000	
Н	4.635185000	-0.190376000	-1.491425000	

Н	4.303894000	1.438336000	-0.970757000	
Ν	6.583449000	1.990368000	-0.167703000	
Н	7.471797000	2.005583000	0.307728000	
Н	5.851532000	2.620825000	0.149406000	
С	5.021727000	-2.944975000	-1.944157000	
0	4.135155000	-2.239474000	-1.422049000	
Ν	4.692266000	-4.164161000	-2.514733000	
Н	3.706577000	-4.279897000	-2.699431000	
Н	5.310530000	-4.575694000	-3.199152000	
Ν	6.326711000	-2.600434000	-1.944599000	
Н	6.615429000	-1.691375000	-1.538881000	
Н	7.027562000	-3.193988000	-2.359306000	
Ν	-5.377316000	-1.744640000	0.679953000	
С	-5.069964000	-0.386299000	1.276096000	
С	-4.594471000	-1.916891000	-0.599944000	
С	-4.912416000	-2.790485000	1.662951000	
С	-6.873328000	-1.922510000	0.450519000	
С	-7.503516000	-1.171665000	-0.728148000	
0	-7.471576000	0.227514000	-0.594277000	
Н	-5.610560000	-0.304522000	2.220496000	
Н	-5.410547000	0.383029000	0.590441000	
Н	-3.990923000	-0.339928000	1.439295000	
Н	-3.533050000	-1.867788000	-0.341045000	
Н	-4.847054000	-2.890306000	-1.026170000	
Н	-4.859636000	-1.117384000	-1.291255000	
Н	-3.847382000	-2.624502000	1.850713000	
Н	-5.076916000	-3.777841000	1.228019000	
Н	-5.492117000	-2.685790000	2.581793000	
Н	-7.357073000	-1.623749000	1.384321000	
Н	-7.032036000	-2.995940000	0.303723000	
Н	-7.053599000	-1.492986000	-1.675220000	
Н	-8.549894000	-1.511721000	-0.744747000	
Н	-6.852855000	0.592652000	-1.276847000	
Cl	-1.643071000	-1.393876000	1.291338000	
С	-0.785317000	3.036077000	-0.409125000	
N	-0.784729000	2.094931000	0.565018000	
Н	-1.461782000	1.344859000	0.532135000	
Н	-0.062117000	2.036145000	1.278743000	
N	0.252862000	3.920205000	-0.418688000	
Н	0.271973000	4.541579000	-1.212757000	
Н	1.153285000	3.701912000	0.006692000	
0	-1.713879000	3.126557000	-1.253496000	
C	-4 540881000	1 545218000	-2 087123000	
N	-4 522179000	2 503550000	-1 118465000	
Н	-5 407595000	2 870598000	-0.808627000	
н	-3 663673000	3 034895000	-0.970730000	
N	-3 362214000	1 318762000	-2 71306000	
Н	-3.324108000	0.582931000	-3.398165000	
н	-2.529147000	1.836394000	-2.433402000	
0	-5.573183000	0.880652000	-2.357557000	
~				

Coline Chloride	Urea	Reline	Obs.	Technique
50	62	48	Lattice mode	INS
64	74		Lattice mode	INS
77	80	72	Lattice mode	INS
84	90		Lattice mode	INS
112	107		Lattice mode	INS
	126		Lattice mode	INS
123	135		Lattice mode	INS
139	152		Lattice mode	INS
	188	178?	Lattice mode	INS
211		178?	τCC + νOHCl/ν OHO=C	INS
279		shldr	δΝCC	INS
286		252	τCH ₃	INS
321		shlðr	ρ Ν(CH ₃) ₃	INS
341		296	Mainly $(\tau CH_3)_{Ch}$ small cont of $(\omega_{as}NH_2)_U$	INS
349		333	τCH ₃	INS
371		373	ρ Ν(CH ₃) ₃	INS
421		421	δN(CH ₃) ₃	INS
447, 466	443	448	$(\delta N(CH_3)_3)_{Ch}$ small cont of $(\omega_s NH_2)_U$	INS
532	546	526	$(\delta NCN)_{U}$, small cont of $(\delta NCC/CCO)_{Ch}$	Raman
	588, 618	587	$\tau_{as}NH_2$ small cont of δCO	INS
623		?	τΟΗ	INS
719		714	v _s (1) CN (Ch <i>gauche</i>)	Raman
		769	v _s (1) CN (Ch <i>trans</i>)	Raman
	787	787	πCO	FTIR
864		866	ν _s (2) CN	Raman
895		884 shldr	ρCH₂	Raman
953, 960		958	v _{as} (3,4) CN	Raman
	1010	997	ν _s CN	Raman
1016	1017	1002	$ ρ_{as}NH_2 $, $ρCH_3$, $ρCH_2$, $δCOH$	INS
1060, 1081		1066	ρCH ₃ , ρCH ₂ , δCOH + νCC	INS
1151	1158	1140	$(\rho_{s}NH_{2})_{U} + (\rho CH_{3} + \nu CO)_{Ch}$	INS
1217		1205	ρCH₃	INS
1285		1279	ρCH₃	INS
1344		1344	ωCH ₂ + δCOH	INS
1413, 1423		1418	$\delta_{s}CH_{3} + \delta COH$	Raman
	1460	1433	v _{as} CN	FTIR
1451, 1458		1448	$\delta s CH_3 + + \delta CH_2$	Raman
1487		1478	δas CH3 + δ CH2	Raman
	1676	1606	<u>δNH</u> ₂ + νC=O	FTIR
	1591	1660	<u>νC=O</u> + <u>δ</u> NH ₂	FTIR
2888		2881	vsCH2	Raman
2924		2929	v_{as} CH2 + v_{s} CH3	Raman
2966		2970	v _{as} CH2 + v _s CH3	Raman
3025, 3013		3024	v _{as} CH3	Raman
3219		?	vOH	FTIR
	3256		δ NH ₂ + vCO Fermi w/ vNH	FTIR
		3188	? (see discussion)	FTIR
	3333	3315	v _s NH ₂	FTIR
	3427	3417	v _{as} NH ₂	FTIR

Table S2. Assignment of reline's vibrational modes. The first three columns list the vibrational frequency in cm-1.

 τ - torsion; ν - stretching; δ - deformation; ρ - rocking; ω - wagging; π - out-of-plane deformation.

Figure S2. INS spectra of Reline, urea and choline chloride (ChCl) collected using TOSCA

Figure S3. INS spectra of Reline, urea and choline chloride (ChCl), collected using MAPS with incident energy (Ei) of a) 806 cm-1, b) 2016 cm-1 and c) 5243 cm-1. Only small Q values in the range $0 \le Q \le 9$ Å-1 are represented.

Figure S4. Dependence of energy resolution with energy transfer for the TOSCA instrument

Figure S5. Raman spectra of urea (top), Reline (middle) and choline chloride (bottom)

Figure S7. FTIR-ATR spectra of urea (top), Reline (middle) and choline chloride (bottom)

Wavenumber /cm⁻¹

Figure S8. Comparison between Reline's experimental infrared spectrum and the one estimated by a discrete ab-initio calculation

Figure S9. Raman spectra of Reline with increasing deuterium content

Figure S10. FTIR-ATR spectra of Reline with increasing deuterium content

