Electronic Supplementary Information

Structural, electronic and mechanical properties of sp³-hybridized BN phases

Rulong Zhou^{1,2*}, Jun Dai², and Xiao Cheng Zeng^{2,3*} ¹School of Materials Science and Engineering, Hefei University of Technology, Hefei, Anhui 230009, China ²Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 ³Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui 230026, China *rlzhou@hfut.edu.cn, *xzeng1@unl.edu

structure	Space	Lattice	Inequivalent sites
	group	Parameters	
bct-BN	P4 ₂ /mnm	<i>a=b=</i> 4.86Å,	B1 (0.8259, 0.8259, 0.5)
		<i>c</i> =2.52 Å,	N1 (1.1877, 0.8123, 0.5)
bct_2W_1	$Cmc2_1$	<i>a</i> =2.53 Å,	B1(0.0, 0.3922, -0.1056); B3(0.0, 0.7257, -0.2632);
		<i>b</i> =13.17 Å,	B5(0.0, 0.0558, -0.1073);
		<i>c</i> =4.28 Å,	N1(0.0,0.2734,-0.1301); N2(0.0, 0.3931, -0.7362);
			N5(0.0, 0.0565, -0.7359)
bct_1W_1	Pbam	<i>a</i> =8.79 Å,	B1(-0.9117, 0.1716, 0.0); B5(-1.1659, 0.3288, -0.5)
		<i>b</i> =4.24 Å,	N1(-0.9113, 0.7995, 0.0); N5(-1.1661, 0.7001, -0.5)
		<i>c</i> =2.53 Å,	
bct ₂ W ₂	$Pmn2_1$	<i>a</i> =2.53 Å,	B1(0.5, 0.7139, 0.8839); B2(0.5, 0.2083, 0.8822);
		<i>b</i> =8.78 Å,	B3(0.5, 0.5364, 0.2247); B7(0.0, 0.9586, 0.8818) N1(0.5, 0.5358, 0.8567); N3(0.0, 0.9592, 0.2564);
		<i>c</i> =4.25 Å,	N4(0.0, 0.2856, 0.7539); N5(0.0, 0.7914, 0.7538)

Table SI. Crystalline information of the predicted BN structures in group I.

Table SII. Crystalline information of the predicted BN structures in group II

structure	Space	Lattice	Inequivalent sites
	group	Parameters	

M2-BN	Pnma	<i>a</i> =4.81Å,	B1 (0.8401, 0.25, 0.9079)
		<i>b</i> = 2.56Å,	N1 (0.6794, 0.25, 0.6073)
		<i>c</i> =4.25 Å,	
$M2_1W_1$	$Cmc2_1$	<i>a</i> =2.56 Å,	B1(0.0, 0.7787, -0.9113); B2(0.0, 0.8850, -0.4084);
		<i>b</i> =13.13 Å,	B5(0.0, 0.5519, -0.2421) N1(0.0, 0.7770, -0.2824); N3(0.0, 0.4474, -0.3744);
		<i>c</i> =4.38 Å,	N5(0.0, 0.1145, -0.2804)
$M2_1bct_1$	C2/m	<i>a</i> =13.17 Å,	B1(-0.7190, 0.0, 0.1717);B2(-0.6112, 0.0, 0.6678);
		<i>b</i> =2.54 Å,	B5(-0.0582, 0.0, 0.1704);
		<i>c</i> =4.30 Å,	N1(-0.6097, 0.0, 0.3005); N2(-0.2807, 0.0, 0.2080);
		β=90.79°	N5(-0.0594, 0.0, 0.7998)

Table SIII Crystalline information of the predicted BN structures in group III.

structure	Space	Lattice	Inequivalent sites
	group	Parameters	
AW-BN	Pbca	<i>a</i> = 4.39Å,	B1 (0.5872, 0.6707, 1.3665)
		<i>b</i> =4.34 Å,	N1 (0.4079, 0.6941, 0.6346)
		<i>c</i> =5.05 Å,	
AW_1W_1	$Cmc2_1$	<i>a</i> =5.09 Å,	B1(0.2404,-0.3301,0.9820);B5(0.0,-0.4164, 0.4846);
		<i>b</i> =8.74 Å,	B7(0.0, -0.9233, 0.6488);
		<i>c</i> =4.33 Å,	N1(0.2411,-0.6693,0.1131); N5(0.0,-0.0787,0.5118);
			N7(0.0,-0.5832, 0.6122)
AW ₁ M2	$Cmc2_1$	<i>a</i> =7.62 Å,	B1(0.3269, 0.3376, 0.4967); B5(0.0, 0.3443, 0.6638)
1		<i>b</i> =4.37 Å,	N1(0.3271, 0.6578, 0.6311); N5(0.0, 0.3456,0.0213)
		<i>c</i> =4.42 Å,	
AW ₁ bct ₁	P-3m1	<i>a=b=</i> 5.09 Å,	B1(0.8279,0.1721,0.8299);
		<i>c</i> =4.39 Å,	B7(0.3333,0.6667,0.6643); N1(0.1720, 0.8280,0.7942);
		γ=120°,	N7(0.3333,0.6667,0.2988);

Figure S1 Phonon spectra of the ten new phases of BN under 0 GPa.

Figure S2 Stress-strain relationships of various BN structures under shear load in the weakest slip planes.

Figure S3 The structures of each image in the transition path from h-BN to different BN structures. The image marked in red color is the transition state of each path. (a) transition without intermediate phases (b) transition with an intermediate phase.