Supplementary Information

H₂ binding to the active site of [NiFe] hydrogenase studied by multiconfigurational and coupled-cluster methods

Geng Dong,^a Quan Manh Phung,^b Simon D. Hallaert,^b Kristine Pierloot,^b* Ulf Ryde ^a*

^a Department of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124,

SE-221 00 Lund, Sweden

^b Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium

Correspondence to Ulf Ryde, email: Ulf.Ryde@teokem.lu.se, or

Kristine Pierloot, email: Kristine.Pierloot@chem.kuleuven.be

2017-03-01

Table S1. Relative energies of the three H_2 adducts (kJ/mol), calculated with the CCSD(T) and DMRG-CASPT2 methods with and without the semi-core 3s3p correlation on model 1, using QM/MM structures optimised with the TPSS or B3LYP methods. The net effect is the difference of the energies obtained with and without the 3s3p correlation. The ¹Ni-H₂ structures were used as the reference.

3s,3p	Method	TPSS structures			B3LYP structures		
correlation		¹ Ni-H ₂	¹ Fe-H ₂	³ Fe-H ₂	¹ Ni-H ₂	¹ Fe-H ₂	³ Fe-H ₂
without	CCSD(T)	0	24.7	-0.7	0	13.6	-19.9
	DMRG-CASPT2	0	18.6	-13.5	0	13.5	-21.3
with	CCSD(T)	0	18.1	4.1	0	8.9	-10.8
	DMRG-CASPT2	0	17.7	-4.6	0	15.8	-7.9
net effect	CCSD(T)	0	-6.6	4.8	0	-4.7	9.1
	DMRG-CASPT2	0	-0.9	8.9	0	2.3	13.4

Table S2. T_1 , D_1 , and %TAE diagnostics¹ of the CCSD(T) calculations on model 1. The following criteria have been suggested for the computation of reliable *d*-block energetic and spectroscopic properties using single-reference methods: $T_1 < 0.05$, $D_1 < 0.15$, and %TAE < 10. It can be seen that the T_1 values for the singlet structures and the D_1 values for all structures are above the limits, although %TAE is well below the limit for all complexes. However, as discussed before,² the non-dynamical correlation effects are situated on the Fe centre, which is constant in all complexes and does not affect the singlet–triplet energy difference.

Diagnostic	TPS	TPSS structures			B3LYP structures			
	¹ Ni-H ₂	¹ Fe-H ₂	³ Fe-H ₂	¹ Ni-H ₂	¹ Fe-H ₂	³ Fe-H ₂		
T_1	0.060	0.057	0.044	0.059	0.055	0.046		
D_1	0.369	0.380	0.201	0.369	0.366	0.193		
%TAE(T)	6.1	5.8	4.9	5.8	5.5	5.6		

Figure S1. Active natural orbitals and their occupation numbers resulting from the DMRG calculation of the ${}^{1}Ni-H_{2}$ state for model 1, optimised with the B3LYP method.

Figure S2. Active natural orbitals and their occupation numbers resulting from the DMRG calculation of singlet 1 Fe-H₂ state for model 1, optimised with the B3LYP method.

Figure S3. Active natural orbitals and their occupation numbers resulting from the DMRG calculation of the triplet 3 Fe-H₂ state for model 1, optimised with the B3LYP method.

References

- 1. W. Jiang, N. J. DeYonker and A. K. Wilson, J. Chem. Theory Comput., 2012, 8, 460
- 2. Delcey, M. G.; Pierloot, K.; Phung, Q. M.; Vancoillie, S.; Lindh, R.; Ryde, U. Phys. Chem. Chem. Phys. 2014, 16, 7927-7938.