UV-induced hydrogen-atom transfer and hydrogen-atom detachment in monomeric 7-azaindole isolated in Ar and n-H₂ matrices

Maciej J. Nowak, Igor Reva, Hanna Rostkowska and Leszek Lapinski

Electronic Supplementary Information

Table S1 The relative energies of prototropic tautomers of 7-azaindole. The energies were calculated at the DFT(B3LYP)/6-311++G(d,p) level.

STRUCTURE	FORM	$\Delta \mathbf{E} / \mathrm{kJ} \cdot \mathrm{mol}^{-1}$
N H	N1H	0.0
N N H	N7H	52.1
H	СЗН	62.3
N	С2Н	145.7
	С6Н	166.3
H	С5Н	167.5
H	С4Н	184.5
H	С9Н	203.0
N H	С8Н	203.4

Figure S1. (a) Infrared spectrum of 7-azaindole monomers isolated in an Ar matrix, compared with the theoretical spectra calculated for the **N1H** isomer. Theoretical spectra were computed: (b) within harmonic approximation; (c) taking into account anharmonic effects, as defined in Gaussian 09, Revision D.01. The theoretical harmonic wavenumbers were scaled by a factor of 0.98. The calculations were carried out at the DFT(B3LYP)/6-311++G(d,p) level.

Table S2 Experimental wavenumbers (ρ) and relative integrated intensities (I) of the bands in the spectra of 7-azaindole monomers isolated in Ar and n-H₂ matrices. The experimental spectra are compared with the theoretical spectrum [wavenumbers (ρ) and absolute intensities (A)] calculated, at the DFT(B3LYP)/6-311++G(d,p) level, for the **N1H** tautomer of the compound. The theoretical harmonic wavenumbers were scaled by a single factor of 0.98. Integrated intensities of the experimental bands (I) were normalized in such a way that their sum (over all the experimental bands reported in the table) is equal to the sum of absolute intensities of the assigned theoretical bands.

Ar matrix		H_2 matrix		DFT(B3LYP)/		DFT(B3LYP)/		
				6-311++G(d,p)		6-311++G(d,p)		
				harmonic, scaled anharmonic.				
	N1			N1H		N1H		
Ŷ	Ι	P	Ι	Ŷ	Α	Ŷ	Α	-
cm ⁻¹	rel.	cm^{-1}	rel.	cm^{-1}	$\frac{km}{mol}$	cm ⁻¹	$\frac{km}{mol}$	
3509/3505	99	3506	89	3590	89	3498	70	
				3192	1	3121	4	
				3172	2	3104	1	
3100	4	3098	5	3128	18	3059	17	
3071/3067	6	3066/3061	12	3106	11	3047	11	
3035	6	3039	6	3092	12	3017	11	
1604	17	1604	15	1607	19	1598	16	
1582	11	1583/ <u>1581</u>	15	1581	20	1573	17	
1511/1508	8	1512/1509	9	1504	17	1500	1	
1495	8	1495	5	1492	8	1489	4	
1422	14	1423	20	1419	13	1416	17	
1413	38	1414	30	1407	54	1398	33	
1349/1341	22	1353/ <u>1345</u>	16	1340	26	1342	19	
1311	17	1311	14	1318	24	1314	8	
1285	20	1284	25	1283	22	1281	25	
				1244	1	1247	0.4	
1201	2	1202	2	1195	2	1199	1	
1116	2	1116	2	1114	1	1119	2	
1086/ <u>1084</u>	17	1088	14	1084	24	1087	15	
1064	8	1065	5	1062	14	1062	12	
1041	1	1036	0	1035	1	1037	0.1	
959	1	963	1	958	1	976	1	
<u>927</u> /925	17	946	18			962	21	2γN1-H overtone
				927	0.1	938	0.2	
897	10	898	8	893	11	899	13	
891	1	880	2	882	3	880	1	-
872	3	860	1	856	1	861	4	_
799/ <u>797</u>	12	799	18	794	21	816	3	_
779/779/ <u>773</u>	20	777	23	772	39	778	56	-
760	3	759	3	758	4	761	3	-
		744	4					-
719	30	726	43	714	72	718	67	-
624	3	624	2	622	3	626	3	-
607	< 1			606	2	610	0.4	-
582	< 1	581	1	581	3	585	3	4
				550	0.5	556	1	
458	26	467	26	460	51	475	54	γN1-H
425	8			422	9	426	9	4
417	15			416	21	424	15	4
				236	0.1	242	0.3	4
				215	15	218	14	J

Table S3 Experimental wavenumbers (φ) and relative integrated intensities (*I*) of the bands in the spectrum of **N7H** tautomer generated upon UV ($\lambda > 270$ nm) irradiation of 7-azaindole monomers isolated in an Ar matrix. The experimental spectrum is compared with the theoretical spectrum [wavenumbers (φ) and absolute intensities (A)] calculated, at the DFT(B3LYP)/6-311++G(d,p) level, for the **N7H** tautomer. The theoretical harmonic wavenumbers were scaled by a single factor of 0.98. Integrated intensities of the experimental bands (*I*) were normalized in such a way that their sum (over all the experimental bands reported in the table) is equal to the sum of absolute intensities of the assigned theoretical bands.

Ar matrix		DFT(B	3LYP)/	DFT(B3LYP)/		
		6-311+	+G(d,p)	6-311++G(d,p)		
		harmoni	c, scaled	anharmonic		
N7H		N	7H	N71	H	
Ŷ	Ι	V	А	<i>v</i>	А	
-1	1	-1	km	-1	km	
ст	rei.	cm	mol	cm	mol	
3430/ <u>3427</u> /3423	148	3510	75	3426	60	
		3175	7	3102	16	
		3161	1	3089	1	
		3140	10	3085	74	
		3140	3	3085	68	
		3107	9	3025	12	
1617	31	1617	35	1607	15	
1589	78	1589	56	1581	46	
1517/1513	30	1509	51	1506	32	
		1463	0.4	1466	4	
		1450	9	1447	4	
1401	50	1410	25	1402	13	
1367/ <u>1366</u>	43	1365	24	1364	27	
1315	107	1313	125	1309	74	
1272	9	1272	10	1273	5	
1216	11	1214	10	1216	7	
		1192	1	1199	1	
1129/1126	60	1136	62	1135	42	
1092	18	1092	6	1096	8	
		1051	1	1054	1	
1029	23	1026	21	1030	14	
		938	2	985	0.03	
		900	2	937	9	
904	6	899	5	913	5	
878	9	877	5	906	2	
		873	10	878	9	
		762	18	810	4	
		747	0.07	775	69	
	10	736	2	750	0.1	
727	48	721	117	742	116	
702	28	699	40.	733	73	
		601	1	621	1	
		592	2	606	1	
550	10	558	3	593		
552	10	550	6	555	6	
		419	11	425	6	
		384	11	412	18	
		245	9	253	8	
		209	1	221	1	

Table S4 Experimental wavenumbers (φ) and relative integrated intensities (*I*) of the bands in the spectra of **C3H** tautomer generated upon UV ($\lambda > 270$ nm) irradiation of 7-azaindole monomers isolated in Ar and n-H₂ matrices. The experimental spectra are compared with the theoretical spectrum [wavenumbers (φ) and absolute intensities (A)] calculated, at the DFT(B3LYP)/6-311++G(d,p) level, for the **C3H** tautomer. The theoretical harmonic wavenumbers were scaled by a single factor of 0.98. Integrated intensities of the experimental bands (*I*) were normalized in such a way that their sum (over all the experimental bands reported in the table) is equal to the sum of absolute intensities of the assigned theoretical bands.

Ar matrix		H_2 matrix		DFT(B3LYP)/		DFT(B3LYP)/	
		_		6-311++G(d,p)		6-311++G(d,p)	
				harmonic, scaled		anharmonic	
	C3	H		СЗН СЗН		H	
Ŷ	Ι	Ŷ	Ι	Ŷ	Α	Ŷ	Α
am-1	m 21	-1	m a1	-1	km	xm	km
cm	rei.	CIII	rei.	cm	mol	CIII	mol
				3129	15	3049	15
				3103	9	3039	10
				3103	12	3019	14
				3091	15	2996	14
				2995	3	2895	4
				2967	6	2886	7
				1613	18	1608	14
				1581	5	1574	68
1562/1560	29	1562	29	1579	67	1570	31
				1467	1	1463	1
1401	45	1402	22	1404	24	1396	21
1389/1387	48	1389/1387	33	1386	52	1384	16
				1317	0.1	1313	4
1314	24	1314	18	1309	20	1305	6
1280	21	1281	30	1283	15	1278	11
1210	21	1213/1210	40	1217	24	1212	18
				1203	5	1202	5
				1153	1	1154	0.4
				1119	2	1116	1
1103	7	1102	9	1098	6	1102	6
				1042	1	1045	0
				971	0.2	991	4
967	2	968	3	966	2	976	1
		928	2	930	1	935	1
904	6	904	8	914	6	915	7
869	7	869	6	861	5	867	5
				855	1	860	0
811	63	813	61	809	51	814	33
				762	7	772	4
				746	1	757	3
				742	3	745	3
				618	0.1	629	0.2
				574	0.4	585	1
				546	1	551	1
				428	5	433	5
				416	0.06	423	0.01
				392	0.01	406	0.03
				212	7	218	7
				192	0.04	195	0.1

Table S5 Experimental wavenumbers (ν) and relative integrated intensities (*I*) of the bands in the spectra of 7-azaindolyl radical generated upon UV ($\lambda > 270$ nm) irradiation of 7-azaindole monomers isolated in Ar and n-H₂ matrices. The experimental spectra are compared with the theoretical spectrum [wavenumbers (ν) and absolute intensities (A)] calculated, at the DFT(B3LYP)/6-311++G(d,p) level, for the 7-azaindolyl radical. The theoretical wavenumbers were scaled by a single factor of 0.98. Integrated intensities of the experimental bands (*I*) were normalized in such a way that their sum (over all the experimental bands reported in the table) is equal to the sum of absolute intensities of the assigned theoretical bands.

Ar matrix		H ₂ matrix		DFT(B3LYP)		
		-		/6-311++G(d,p)		
	Rac	lical		Radical		
Ŷ	Ι	Ŷ	Ι	Ø	А	
cm ⁻¹	rol	cm ⁻¹	rol	cm ⁻¹	km	
CIII	101.	CIII	101.	CIII	mol	
				3156	9	
				3133	13	
				3129	6	
				3109	9	
				3099	10	
				1578	39	
1556	82	1555	117	1563	87	
				1471	3	
				1450	1	
1372	16	1372	6	1379	19	
1325	27	1325	8	1331	20	
1299	19	1299	22	1303	26	
1247	23	1246	13	1253	13	
				1215	6	
				1184	4	
1158	17	1157	11	1154	9	
1090	14	1089	12	1088	9	
				1037	1	
				952	0.5	
				946	4	
				927	0.1	
				887	5	
				877	5	
840	10	839	7	835	5	
786	48	786	59	779	67	
				756	7	
				750	0.3	
				713	1	
				599	5	
				553	2	
				539	0.2	
				490	0.2	
				435	6	
				403	0.02	
				220	1	
				201	6	

Figure S2. Fragments of the infrared spectra of 7-azaindole isolated in an n-H₂ matrix: (a) the spectrum recorded after deposition of the n-H₂ matrix and before any irradiation; (b) the spectrum recorded after 1 min. of UV (λ >270 nm) irradiation; (c) the spectrum recorded after 31 min. of UV (λ >270 nm) irradiation.