Supplement Materials

The role of group III, IV elements in Nb₄AC₃ MAX phases (A=Al, Si, Ga, Ge) and the unusual anisotropic behavior of electronic and optical properties

Fu Yu-dong^a, Baochang Wang^{b,II}, Yue Teng^a, Zhu Xiao-shuo^a, Feng Xiao-xue^a, Yan Mu-fu^c, Pavel Korzhavyi^{d,e}, Weiwei Sun^{d,*}

^aSchool of Material Science and Chemical Engineering & Key Laboratory of Superlight Materials and Surface Technology,

Ministry of Education, Harbin Engineering University, Harbin 150001, China

b.Department of Physics and the Competence Centre for Catalysis, Chalmers University of Technology, 41296, Sweden

KTH - yal Instit

ute of

Technology, Stock holm SE - 10044, Sweden. KTH - Royal Institute of Technology, Stock holm SE - 10044, Sweden.

^cSchoolof Material Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

^dDepartmentof Material Science and Engineering, KTH-Royal Institute Technology, Stockholm, SE-10044, Sweden

eInstitute of Metal Physics, Ural Division of the Russian Academy of Sciences, 620219 Ekaterinburg, Russia

In Fig. S1, it can be seen that the band structure of Nb_4GaC_3 and Nb_4AlC_3 are quite similar as Al and Ga have the same number of valence electrons. Similarly, the band structure of Nb_4SiC_3 and Nb_4GeC_3 also show similar features. Compared with Nb_4GaC_3 and Nb_4AlC_3 , Nb_4GeC_3 and Nb_4SiC_3 have more bands across the Fermi level, indicating more states available for intra-band absorption in these two systems, especially for Nb_4SiC_3 , which can be further verified by the calculated real part of the dielectric function. The Nb_4GaC_3 has more bands around Fermi level than Nb_4AlC_3 as well.

Fig. S1. The band structure of Nb_4AlC_3 (a), Nb_4SiC_3 (b), Nb_4GaC_3 (C), and Nb_4GeC_3 (d). The Fermi

level is set to be 0 eV.