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I. AB INITIO MOLECULAR HAMILTONIAN

A. The Hamiltonian

(1) The molecular Hamiltonian for the ground electronic state and the lowest two excited

1πσ∗ states,

Ĥ =


T̂ 0 0

0 T̂ 0

0 0 T̂
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
V X V XA2 V XB1

V XA2 V A2 V A2B1

V XB1 V A2B1 V B1

 , (1)

is set in the basis of three locally diabatic electronic states X, A2, and B1. Pyrrole is

described using (a) three Jacobi coordinates R ≡ (R, θ, φ) of the dissociating H-atom relative

to the center of mass of the pyrrolyl fragment (the so-called ‘disappearing modes’; see Fig.

S1) and (b) 21 dimensionless normal modes Q of pyrrolyl, calculated at the equilibrium

geometry of the fragment (the so-called ‘non-disappearing modes’; examples of them are

given in Fig. S2). The normal modes Q are partitioned into four blocks according to the

irreps Γ of the C2v symmetry group, Q = {Qa1,Qa2,Qb1,Qb2}.

(2) The kinetic energy operator in Eq. (1) is set in the body-fixed principal axis frame for

the zero total angular momentum of pyrrole (atomic units are used hereafter):
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The first term is the kinetic energy of the relative motion of the H-atom and pyrrolyl;

µ is the corresponding reduced mass. The second term refers to pyrrolyl vibrations; the
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FIG. S1: Body-fixed pyrrolyl axes and Jacobi coordinates (R, θ, φ) for the detaching H atom in

pyrrole (H - gray; C - orange; N - blue).

Qa1(5) (ω = 1558 cm−1) Qa2(1) (ω = 533 cm−1) Qa2(3) (ω = 932 cm−1)

FIG. S2: Pyrrolyl normal modes used in the quantum mechanical calculations. The a1 modes

are the totally symmetric in-plane distorsions. The out-of-plane a2 modes are antisymmetric with

respect to the reflection planes σv, σ′v and symmetric with respect to rotations about the C2 axis.

sum
∑Γ

i runs over the vibrational modes i belonging to the irrep Γ. The last two terms

describe the orbital motion of the H-atom and the rotational motion of the rigid pyrrolyl

ring; j = (jx, jy, jz) is the pyrrolyl angular momentum operator and the inertia constants Ix,

Iy and Iz are evaluated at the fragment equilibrium geometry; the C2v symmetric pyrrolyl

ring lies in the yz-plane, with z being the C2 axis (see Fig. S1).

(3) The elements of the diabatic potential energy matrix in Eq. (1) are constructed as sums

of two groups of terms,

V (R,Q) = VR(R) + VQ(Q|R) (3)

Functions VR(R) of the three disappearing modes are constructed using spline interpolations

of the ab initio points calculated on a dense coordinate grid (R, θ, φ). Functions VQ(Q|R),
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depending on the 21 non-disappearing modes Q, are constructed in the spirit of the vibronic

coupling model,1 with pyrrolyl treated as a semirigid ring using quadratic Hamiltonians,

and parameters depending on the interfragment distance R.

(4) The diagonal elements V α have the form (α = X,A2, B1):

V α(R, θ, φ,Q) = V α
R (R, θ, φ) +

∑
i

a1

καi (R)Qa1(i) +
1

2

∑
Γ

∑
i,j

Γ
γαΓ,ij(R)QΓ(i)QΓ(j) . (4)

where καi (R) are the R-dependent gradients (vanishing for all modes but a1) and γαij(R)

are the R-dependent normal mode Hessian matrices evaluated at Q = 0; matrices γα are

four-block diagonal: γα = γαa1
⊕ γαa2

⊕ γαb1 ⊕ γ
α
b2

.

(5) The off-diagonal diabatic couplings V αβ are

V αβ(R, θ, φ,Q) = V αβ
R (R, θ, φ) +

∑
i

Γα×Γβ

λαβi (R)QΓα×Γβ
(i) . (5)

The functions V αβ
R (R, θ, φ) are the coupling elements between the regularized quasi-diabatic

states constructed on the ab initio coordinate grid using the algorithm of Köppel et al.2

Although they do not have a simple analytical representation, they follow the lowest al-

lowed orders in the symmetry-adapted spherical harmonics near conical intersections, namely

V A1A2
R ∼ sin2 θ sin(2φ) and V A1B1

R ∼ sin θ cosφ. The Q-dependent coupling terms for X/A2

and X/B1 are linear in the vibrational modes of a2 and b1 symmetry, respectively. The

coupling matrix element V A2B1 between the states A2/B1 is not included in the quantum

mechanical calculations.

(6) The quasi-diabatic representation of the Hamiltonian of Eq. (1) is local, and a given off-

diagonal matrix element is non-zero only in the vicinity of the respective conical intersection.

For the second term in Eq. (5), this is achieved by the attenuation of the coupling strength

λαβi outside a strip of width ∆ around the conical intersection,

λαβi (R) = λαβCI,i exp

(
−

∣∣∣∣∣R−Rαβ
CI

∆

∣∣∣∣∣
n)

, (6)

where Rαβ
CI is the position of a conical intersection between α/β = X/A2 or X/B1. The

parameters λαβCI,i, ∆ and n are tuned ‘by eye’ in order to obtain smooth diabatic Hessians

for the coupled states. For the first term in Eq. (5), similar attenuation functions are

applied to the (R, θ, φ)-dependent mixing angles of the regularized adiabatic-to-diabatic

transformation.
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B. Ab initio calculations

(1) The matrix elements of the molecular Hamiltonian are found from the electronic structure

calculations performed along the minimum energy path (MEP) for the N–H bond elongation

coordinate. The MEP is evaluated on a grid in the Jacobi coordinate R in the lowest excited

state 1A2(πσ∗). The resulting energy profiles are shown in Fig. 1 of the main paper. Along

the MEP, the molecule is constrained to C2v geometries (i.e., θ, φ = 0). The aug-cc-pVTZ

(AVTZ) basis set of Dunning3 is used and further supplemented with the diffuse s and p

functions added to the N and H atoms of the dissociating bond (one set of s and p functions

for N and two sets for H). The exponents of these functions are derived in an even temprered

manner from the most diffuse s and p functions of the AVTZ basis by dividing the exponents

successively by a factor of 3.0.4 This extension is necessary to correctly describe the Rydberg

character of the A2 and B1 states.

(2) Most calculations are performed at the CASPT2 level of theory. The reference wave-

functions are obtained by state-averaged CASSCF calculations including the X̃, 1A2 and 1B1

states. The active space (eight electrons in seven orbitals) comprises five π valence molecular

orbitals, three of b1 and two of a2 symmety, the 9a1(σ) and the 10a1(3s/σ∗) orbitals.

(3) Table I summarizes the characteristic features of the three calculated electronic states of

pyrrole. Most researchers currently agree that the long wavelength absorption (λ > 235 nm)

is due to the two lowest excited 1πσ∗ states with the vertical excitation energies Tv lying

in the range 5.0 − 5.2 eV for the 1A2 state and around 5.8 − 5.9 eV for the 1B1 state.5–9

This ordering of the electronic states at the Franck-Condon point is found in our CASPT2

calculations, too. Vertical excitation energies of the πσ∗ states are underestimated by 0.4 eV-

0.6 eV compared to the CCSD and MRCI results; the calculated band origins T0 agree

with the known experimental values within similar bounds. The accuracy of the calculated

dissociation thresholds is slightly better. Tables II and III provide further characterization of

the molecular Hamiltonian and give the dimensionless coupling strength parameters κc =λ/ω

for the coupling modes of a2 and b1 symmetries, respectively. The frequency ω is the pyrrolyl

frequency at the respective intersection.

(4) The potential energies of the states X̃, A2, and B1 as functions of the disappearing

modes are found on a three-dimensional grid in the (Ri, θj, φk)-space, with the nodes Ri

being grid points on the MEP. The parameters of the Q-dependent part of the Hamiltonian
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TABLE I: Characteristic data of the ab initio potential energy surfaces of the three lowest electronic

states of pyrrole: Vertical excitation energy Tv (in eV); band origin T0 (in eV), which includes

ZPEs of the ground and the excited electronic states; quantum mechanical thresholds D0 for the

electronic channels diabatically correlating with the calculated states (in eV). Available theoretical

and experimental results are shown for comparison.

Diabatic state Tv T0 T0 (exp) Dissociation channel D0
a D0 (exp.)

X̃1A1(ππ) 0.0 0.0 0.0 H(1S)/pyrrolyl(12A1) 5.09 −

4.80a 4.32 <4.88d H(1S)/pyrrolyl(12A2) 3.40 4.07d

11A2(πσ∗) 5.17b

5.59c

5.45a 5.30 5.86e H(1S)/pyrrolyl(12B1) 3.96 4.62− 4.67f

21B1(πσ∗) 5.88b

5.84c

aThis work; CASPT2.
bRef. 8; CCSD.
cRef. 9; MRCI.
dRef. 10.
eRef. 11.
fDFT12 and MRCI13 methods estimate the difference in the threshold energies D0(12B1)−D0(12A2) to be

in the range of 0.55 eV—0.60 eV.

TABLE II: Vibrational frequencies ω(i) (in cm−1), coupling strengths λi (in cm−1), and the di-

mensionless coupling strength parameters κc = λc/ωc for the vibrational modes of a2 symmetry at

the X/A2 conical intersection.

Mode λc ωc κc

Qa2(1) 574.0 551.8 1.04

Qa2(2) 759.0 895.7 0.85

Qa2(3) 213.0 940.3 0.23
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TABLE III: Vibrational frequencies ω(i) (in cm−1), coupling strengths λi (in cm−1), and the

dimensionless coupling strength parameters κc = λc/ωc for the vibrational modes of b1 symmetry

at the X/B1 conical intersection. For the angle θ, λθ is evaluated as a gradient ∂V/∂(sin θ) at the

intersection.

Mode λc ωc κc

θ 19751.00 854.00 23.12

Qb1(1) 1151.00 823.6 1.40

Qb1(2) 600.00 765.2 0.78

Qb1(3) 265.00 875.3 0.30

are calculated as first and second derivatives with respect to deviations from the MEP. The

complete ab initio protocol and the details of the diabatization procedure are described

elsewhere.

(5) Coordinate dependent transition dipole moment (TDM) functions, necessary to prop-

erly describe the optical excitation of the πσ∗ states from the ground electronic state, are

calculated at the CASSCF level of theory. Herzberg-Teller expansion is used to account for

the dependence of the TDMs on the internal coordniates,

µ(R,Q) ≈ µR(R) + µQ(Q) , (7)

only linear deviations from the Franck-Condon geometry are taken into account. The co-

efficients in this expansion are calculated as numerical first derivatives of the TDMs with

respect to nuclear displacements along the normal modes.

II. QUANTUM MECHANICAL CALCULATIONS

(1) The absorption spectra and the product state distributions, discussed in the main paper,

are calculated using the Hamiltonian of Eq. (1) in which some coordinates are included in the

dynamics while others are kept fixed to their asymptotic values. These coordinate choices

are listed in Table IV. The results of the calculations using settings M1 and M3 are shown

in Fig. 1 of the main paper; the results of the calculations M2 and M4 are shown in Figs.

2 and 3, respectively. Note that the vertical excitation energies depend on the number of

included a1 modes; the corresponding values are shown in Table IV. The dynamics of the
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TABLE IV: Summary of the calculations reported in the main paper.

Included states Included coordinates Tv [eV] Transition dipole moment

M1. X and A2 (R,Qa2(3)) 3.96 µ = g3Qa2(3)

M2. X and A2 (R, θ, φ,Qa1(5), Qa2(1), Qa2(3)) 4.20 µ = g1Qa2(1) + g3Qa2(3)

M3. X and B1 (R, θ) 5.69 µ = gθ sin θ

M4. X and B1 (R, θ, φ) 5.69 µ = gθ sin θ cosφ

coupled pairs of states X/A2 and X/B1 are studied separately, as was previously done in

Ref. 4.

(2) Most of the reported calculations of the absorption spectra, bound and resonance

eigenstates, and the product state distributions are performed using the program package

PolyWave.15 The code is applicable to general complex symmetric molecular Hamiltonians H

represented as N×N matrices in the basis of N coupled diabatic electronic states. The time

correlation functions, the energy dependent T -matrix elements, and the cross sections are

calculated on equal footing using global in energy Chebyshev expansion of the propagator,

thus allowing comparisons with both pump-probe and frequency resolved experiments. Fil-

ter diagonalization is performed in order to calculate the positions and widths of metastable

resonance states reported in the main text and providing dynamical assignments of diffuse

structures in the absorption spectra. The discrete variable representation (DVR) is used in

the calculations. For the R coordinate, 100 potential optimized DVR points are used in the

range 3.0 a0 − 14.0 a0. For the angular coordinate θ, 100 Gauss-Legendre DVR points are

used in the range (0, π), and the coordinate φ is represented using 32 DVR points selected

uniformly between 0 and 2π. The grids for the vibrational coordinates from the Q-space con-

sist of up 32 potential optimized DVR points. The product state distributions are calculated

using the method of Balint-Kurti et al.16

(3) The calculation M2 in Table IV is performed using the multi-configurational time-

dependent Hartree method (MCTDH) as implemented in the Heidelberg MCTDH package.17

The primitive grid in R consists of 98 sine DVR grid points chosen between 3.3 a0 and

13.0 a0; the (θ, φ)-dependent functions were represented using a two-dimensional Legen-

dre DVR with jmax = 71 and mmax = 21; for the mode Qa1(5) 25 harmonic oscilla-

tor DVR grid points were used; for the modes Qa2(1) and Qa2(3) 17 harmonic oscillator
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DVR points were used. The MCTDH wave function is expressed in the multi-set form

expressed using five (combined) modes {R, (θ, φ), Qa1(5), Qa2(1), Qa2(3)} with the scheme

of {(18, 16), (24, 11), (14, 10), (7, 6), (7, 6)} single-particle functions for each combined mode

and each state. Final state populations were calculated using the flux analysis method, as

implemented in the MCTDH code.18

(4) The vibrational distributions of pyrrolyl in the in-plane mode Qa1(5) and in the coupling

mode Qa2(1), obtained in the calculation M2 for the photon energy Eph = 3.86 eV, corre-

sponding to a Fano resonance, are compared in Fig. S3(a) and (b) with the distributions

emerging in a direct dissociation (isolated state 1A2). The distributions in the direct process

(orange sticks) mainly reflect the projection of the initial state µ|X̃(0)〉 onto the vibrations

of the free pyrrolyl. Both the in-plane mode Qa1(5) and the coupling mode Qa2(1) remain

cold (only v = 0, 1 are populated). Near resonance, these distributions spread to higher

vibrational quantum numbers (blue sticks). This additional vibrational excitation is due to

the dark diabatic component |X̃(v)〉 amplified by the coordinate dependence of the vibronic

coupling ĤCI. The vibronic coupling is weak, and the extra excitation due to ĤCI|X̃(v)〉 is

limited to few quanta. Since the vibronic coupling is linear in the a2 modes, the sequence

of two diabatic transfers [Eqs. (2) and (3) of the main text] can induce an excitation by

maximum two quanta in the coupling modes.
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FIG. S3: (a) The vibrational distribution for the pyrrolyl mode Qa1(5) calculated for the excitation

energy Eph = 3.86 eV, corresponding to a Fano resonance, as a blue stick. The distribution

calculated at the same energy for the isolated state 1A2(πσ∗) is shown with orange color. (b) The

same as in (a), but for the pyrrolyl mode Qa2(1).

Note that the experimental detection of the interference structures in the photofragment

distributions can be hindered by the small width of Fano resonances. For example, the
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photofragment kinetic energy measurements of Ashfold and co-workers,10 performed at fixed

photolysis wavelengths, can easily miss narrow resonance states. In contrast, PHOFEX

spectra of pyrrole, discussed in the main text, are well suited to resolve the interference

effects emerging from the conical intersection.



10
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17 G. A. Worth, M. H. Beck, A. Jäckle, and H.-D. Meyer. The MCTDH Package, version 8.4, see

http://mctdh.uni-hd.de
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