Supplementary information:

Band Gap Modulation of SrTiO₃ upon CO₂ Adsorption

Kostiantyn V. Sopiha¹, Oleksandr I. Malyi², Clas Persson^{2,3}, Ping Wu^{1,*}

1 – Engineering Product Development, Singapore University of Technology and Design, 8
Somapah Road, 487372 Singapore, Singapore

2 – Centre for Materials Science and Nanotechnology, University of Oslo, P. O. Box 1048 Blindern, NO-0316 Oslo, Norway

3 - Department of Physics, University of Oslo, P. O. Box 1048 Blindern, NO-0316 Oslo,

Norway

E-mail: <u>wuping@sutd.edu.sg (</u>W.P)

Figure S1. Convergence of the computed band gap energy with (a,b) thickness of vacuum slab, (c,d) number of atomic layers, and (e,f) number of relaxed surface layers for modeled (a,c,e) SrO-terminated and (b,d,f) TiO₂-terminated SrTiO₃(001) slabs. Star markers represent default values of X used in all other calculations. (a-d) are computed for $SrTiO_3(001)$ slabs with two relaxed surface layers. Other model parameters are described in the methods.

Figure S2. Convergence of the computed CO_2 adsorption energy with (a) thickness of vacuum slab, (b) number of atomic layers, and (c) number of relaxed surface layers for modeled $SrTiO_3(001)$ slab. Star markers represent default values of X used in all other calculations. (a,b) are computed for $SrTiO_3(001)$ slabs with two relaxed surface layers. Other model parameters are described in the methods.

Figure S3. Illustration of the structure relaxation parameters used in this work. Δ represents the interplanar distance in bulk SrTiO₃ ($2\Delta = 3.94$ Å). Green, blue, and red circles represent Sr, Ti, and O ions, respectively.

Figure S4. Illustration of the surface reconstruction on TiO_2 -terminated $SrTiO_3(001)$ surface. (a) top view and (b) side view of the reconstructed surface. (c) Comparison of electronic structures of relaxed (not reconstructed) and reconstructed surfaces. (d) Energy difference per 2×2 surface supercell between relaxed (not reconstructed) and reconstructed $SrTiO_3(001)$ surface vs. number of relaxed surface layers. Star markers represent default values of X used in all other calculations.

Figure S5. Formation and evolution of the surface states at (a) TiO_2 -terminated and (b) SrO-terminated SrTiO₃(001). Black, red, blue, and green curves represent densities of states for bulk SrTiO₃, as-cleaved, relaxed (not reconstructed), and "CO₃-like relaxed" surfaces, respectively. Structure parameters of "CO₃-like relaxed" surface are identical to those of the SrTiO₃(001) containing one adsorbed CO₂ molecule per 2×2 surface supercell (see Table S3). Strokes and numbers represent valence band maximum (VBM), conduction band minimum (CBM), and band gap energies of SrTiO₃(001) slabs.

Figure S6. (a) Band gap energies of bulk SrTiO₃ and clean TiO₂- and SrO-terminated SrTiO₃(001) surfaces as functions of Hubbard U value. Band gap energies of (b) TiO₂- and (c) SrO-terminated SrTiO₃(001) surfaces as functions of Hubbard U value for slab systems containing zero ($\Theta = 0.00$), one ($\Theta = 0.25$), and two ($\Theta = 0.50$) adsorbed CO₂ molecules per 2×2 surface supercell. Here, cutoff energy of 400 eV for plane wave basis sets was used for all DFT+U calculations.

C-O1, C-O2, C-O ₈	1.30 Å
O1-Sr1, O _S -Sr4	2.44 Å
O1-Sr3, O _S -Sr2	2.65 Å
O2-Sr3, O2-Sr2	2.56 Å
∠(01-C-02)	122°
∠(O1-C-O2), ∠(O2-C-O _S)	119°

C-01	1.30 Å
C-O2	1.25 Å
C-O _S	1.38 Å
01-Sr1, 01-Sr2	2.63 Å
∠(O1-C-O2)	129°
∠(O1-C-O _S)	115°
\angle (O2-C-O _S)	117º

C-O1, C-O2	1.27 Å
C-O _S	1.39 Å
O1-Sr1, O2-Sr2	2.60 Å
∠(O1-C-O2)	129°
\angle (O1-C-O _S), \angle (O2-C-O _S)	115º

Figure S7. Metastable CO_2 adsorption configurations on SrO-terminated SrTiO₃(001) surface. The computed adsorption energies for (a), (b), (c), and (d) are 0.06, 0.47, 0.49, and 0.54 eV higher as compared to the most stable adsorption configuration presented in Fig. 2a.

Figure S8. Bader charge transfers imposed by CO_2 adsorption on (a) SrO-terminated and (b) TiO₂-terminated SrTiO₃(001) surfaces. Bader charge redistribution within the separated as-deformed CO₂ molecules and (c) SrO-terminated as well as (d) TiO₂-terminated SrTiO₃(001) surfaces with respect to the free CO₂ molecule and clean SrTiO₃(001) slabs. The Bader charge transfers of as-deformed CO₂ molecules and SrTiO₃(001) slabs are computed separately.

Figure S9. Projected densities of states computed using hybrid HSE functional for two top layers of (a,c,e) TiO₂-terminated and (b,d,f) SrO-terminated SrTiO₃(001) slabs containing (a,b) zero (Θ =0.00), (c,d) one (Θ =0.25), and (e,f) two (Θ =0.50) adsorbed CO₂ molecules per 2×2 surface supercell. For all calculations, we employ 2×2×1 Monkhorst Pack grid and cutoff energy of 400 eV for plane wave basis sets with 3d²4s² electrons of Ti treated explicitly. The calculations are carried out on the optimized geometries obtained from the PBE relaxations.

Figure S10. Different CO₂ coverage modes corresponding to $\Theta = 0.5$ on (a-c) SrO-terminated and (d,e) TiO₂-terminated SrTiO₃(001). (a) and (d) are the most stable modes. The computed adsorption energies for (b), (c), and (e) modes are 0.07, 0.14, and 0.03 eV/molecule higher as compared to the most stable configuration.

Figure S11. Illustration of "supercell size along O1-O2" term used in this manuscript. O1-O2 refers to a vector connecting O atoms of the adsorbed CO₂ molecule. (a) and (b) illustrate the supercell size along O1-O2 for $\sqrt{8} \times \sqrt{8}$ and 2×2 supercells, respectively.

Figure S12. Computed electronic structures of CO₃-like complex adsorbed on the surface oxygen vacancy in $\sqrt{2} \times \sqrt{2}$ SrO-terminated SrTiO₃(001) system. (a) Layer-resolved density of states (LDOS). Orange, green, and blue curves represent population densities for the adsorbed CO₃-like complex, SrO, and TiO₂ layers, respectively. Numbers illustrate effective band gap energies of each atomic layer computed from LDOS neglecting the population densities below 0.1 1/eV/layer. (b) Partial charge density distribution at VB (yellow) and CB (blue) of the SrTiO₃ slabs. The computed CO₂ adsorption energy for this system is 0.31 eV/molecule higher as compared to the most stable configuration with the same coverage ($\Theta = 0.5$).

Table S1. Sizes of supercells, Γ -centered Monkhorst-Pack grids used in the calculations, corresponding CO₂ coverages, and supercell sizes along O1-O2 atoms of the CO₂ molecule adsorbed on TiO₂-terminated SrTiO₃(001) surface; see Fig. S11 for more details. The systems are labeled by their lateral dimensions in units of lattice constant. "2×2/2" refers to the systems containing two CO₂ molecules per 2×2 surface supercell (see Fig. S10).

	Monkhorst-Pack		Supercell size
Supercell size	grid	CO ₂ coverage	along O1-O2
$\sqrt{2} \times \sqrt{2}$	7×7×1	0.5	_
1×2	5×10×1	0.5	2
1×3	3×10×1	0.333	3
1×4	2×10×1	0.25	4
1×5	1×10×1	0.2	5
2×2/2	5×5×1	0.5	2
2×2	5×5×1	0.25	2
2×3	3×5×1	0.167	3
2×4	2×5×1	0.125	4
$\sqrt{8} \times \sqrt{8}$	3×3×1	0.125	4
3×3	3×3×1	0.111	3

Table S2. Structure parameters for the clean $SrTiO_3(001)$ surfaces. The values are given in percent of the lattice constant.

	SrO-terminated	TiO ₂ -terminated
	SrTiO ₃ (001)	SrTiO ₃ (001)
<i>S</i> ₁ , %	5.63	2.45
<i>S</i> ₂ , %	-1.13	-3.35
$d_{12}, \%$	-6.87	-6.23
$d_{23}, \%$	3.11	4.16

	CO ₂ on SrO-terminated	CO ₂ on TiO ₂ -terminated
	SrTiO ₃ (001)	SrTiO ₃ (001)
$S_{l}, \%$	4.33	0.47
<i>S</i> ₂ , %	-0.01	-1.59
<i>d</i> ₁₂ , %	-2.89	-3.39
$d_{23}, \%$	2.01	2.05

Table S3. Structure parameters for the $SrTiO_3(001)$ surfaces containing one adsorbed CO_2 molecule per 2×2 surface supercell. The values are given in percent of the lattice constant.

Surface	Coverage	System		rigure	Adsorption energy (eV)	Band gap (eV)	C-Os bond length (Å)	C-O1 (C-O2) bond lengths (Å)	∠(01-C-02) (°)	Stable Yes/No
			2a		-1.39	1.82	1.36	1.27	123.9	No
	0.5	√2×√2	S7a	-	-1.15	1.43	1.30	1.30 (1.29)	119.3	No
	0.5			S10a	-1.46	1.84	1.36	1.27	124.3	Yes
)1)		2×2/2	2a	S10b	-1.39	1.84	1.36	1.27	124.0	No
<u>3(0(</u>				S10c	-1.32	1.79	1.36	1.28	124.1	No
0			2a		-1.94	1.82	1.33	1.29	122.2	Yes
SrT			S7a		-1.88	1.83	1.30	1.30	119.0	No
nated	0.25	0.25 2×2	S7b		-1.47	1.75	1.38	1.30 (1.25)	128.8	No
L.			S7c		-1.45	1.72	1.39	1.27	129.3	No
l-tei			S7d] _	-1.40	1.72	1.37	1.27	130.4	No
SrO	0.1(7	2×3			-2.10	1.81	1.30	1.30	119.0	Yes
	0.107	3×2	\$79		-2.09	1.82	1.30	1.30	119.0	No
	0.125	√8×√8	5/a		-2.25	1.74	1.30	1.30	119.0	Yes
	0.111	3×3			-2.28	1.74	1.30	1.30	119.0	Yes
	0	2×2	1f		-	1.55	-	-	-	-
		1×2		-	-1.16	1.80	1.37	1.27	131.4	No
1	0.5	2~2/2		S10d	-1.19	1.85	1.37	1.27	130.8	Yes
00		2×2/2		S10e	-1.16	1.80	1.37	1.27	131.4	No
⁰	0.333	1×3			-1.42	1.61	1.36	1.27	130.0	Yes
LI	0.25	1×4			-1.52	1.37	1.36	1.27	129.6	Yes
minated S	0.23	2×2	2b		-1.24	1.50	1.37	1.27	130.8	No
	0.2	1×5			-1.56	1.24	1.35	1.27	129.4	Yes
	0.167	2×3			-	-1.47	1.32	1.35	1.27	129.5
-ter	0.125	2×4			-1.55	1.19	1.35	1.27	129.2	No
[O ₂ .	0.123	√8×√8			-1.57	1.19	1.35	1.27	129.1	Yes
Ë	0.111	3×3			-1.49	1.22	1.35	1.27	129.5	Yes
	0	2×2	1b		_	0.99	-	-	-	-

Table S4. Summary of the computational results. The stability (last column) indicates whether the system has the lowest CO_2 adsorption energy for a given CO_2 coverage.

Most stable CO_2 adsorption configuration on TiO_2 -terminated $SrTiO_3(001)$ surface, as illustrated in Fig. 2b.

_chemical_name_common	'Sr24 Ti28 C2 O84 '
_cell_length_a	7.88820
_cell_length_b	7.88820
_cell_length_c	38.64670
_cell_angle_alpha	90
_cell_angle_beta	90
_cell_angle_gamma	90
_space_group_name_H-M_a	lt 'P 1'
loop_ _space_group_symop_operat 'x, y, z'	tion_xyz
loop	

loop

_6	_atom_site_type_symbol					
_atom_site_fract_x						
atom site fract y						
_{	atom site fract z					
Sr	0.996244	0.996000	0.049046			
Sr	0.997719	0.487818	0.050107			
Sr	0.496407	0.994011	0.048686			
Sr	0.496961	0.494732	0.048335			
Sr	0.000000	0.000000	0.357185			
Sr	0.000000	0.500000	0.357185			
Sr	0.500000	0.000000	0.357185			
Sr	0.500000	0.500000	0.357185			
Sr	0.497341	0.499463	0.459599			
Sr	0.497436	0.993864	0.459526			
Sr	0.997303	0.499078	0.459529			
Sr	0.997158	0.994234	0.459571			
Sr	0.496961	0.494732	0.563983			
Sr	0.496407	0.994011	0.563632			
Sr	0.997719	0.487818	0.562210			
Sr	0.996244	0.996000	0.563272			
Sr	0.500000	0.500000	0.255129			
Sr	0.500000	0.000000	0.255129			
Sr	0.000000	0.500000	0.255129			
Sr	0.000000	0.000000	0.255129			
Sr	0.997158	0.994234	0.152746			
Sr	0.997303	0.499078	0.152788			
Sr	0.497436	0.993864	0.152791			
Sr	0.497341	0.499463	0.152718			
Ti	0.241796	0.237608	0.003417			

Ti 0.232222	0.736087	0.999570
Ti 0.741241	0.237977	0.003373
Ti 0.770702	0.735054	0.999437
Ti 0.250000	0.250000	0.306157
Ti 0.250000	0.750000	0.306157
Ti 0.750000	0.250000	0.306157
Ti 0.750000	0.750000	0.306157
Ti 0.250000	0.250000	0.408213
Ti 0.250000	0.750000	0.408213
Ti 0 750000	0 250000	0 408213
Ti 0 750000	0 750000	0 408213
Ti 0 744185	0 742467	0.511106
Ti 0 742844	0 242545	0.509276
Ti 0 244124	0 742513	0 511027
Ti 0 244457	0 242285	0.509267
Ti 0.770702	0.735054	0.612880
Ti 0.741241	0.237977	0.608945
Ti 0.741241	0.736087	0.612747
Ti 0.232222	0.737608	0.608900
Ti 0.750000	0.257000	0.204101
Ti 0.750000	0.250000	0.204101
Ti 0.250000	0.250000	0.204101
Ti 0.250000	0.250000	0.204101
Ti 0.230000	0.2220000	0.103051
Ti 0.244124	0.742513	0.101291
Ti 0 742844	0.242545	0.103042
Ti 0.744185	0.742467	0.101212
C 0 501658	0 759525	0.965227
C 0 501658	0.759525	0.647090
0 0 254871	0.007329	0.002707
0 0 245860	0 507539	0.001269
0 0 750285	0.007641	0.002937
0 0 760750	0 506768	0.000873
0 0 005039	0 252632	0.001663
O 0.001677	0 763749	0 997473
0 0 504944	0 260278	0.000199
0 0 502108	0 754569	0.000566
0 0 250000	0.000000	0.306157
0 0 250000	0 500000	0.306157
0 0 750000	0.000000	0.306157
0 0 750000	0 500000	0.306157
0 0 255807	0 256240	0.051441
0 0.250333	0.751737	0.049890
O 0.748558	0.257714	0.051441
O 0.753866	0.749864	0.049848
O 0.000000	0.250000	0.306157

0	0.000000	0.750000	0.306157
0	0.500000	0.250000	0.306157
0	0.500000	0.750000	0.306157
0	0.250000	0.000000	0.408213
0	0.250000	0.500000	0.408213
0	0.750000	0.000000	0.408213
0	0.750000	0.500000	0.408213
0	0.250000	0.250000	0.357185
0	0.250000	0.750000	0.357185
0	0.750000	0.250000	0.357185
0	0.750000	0.750000	0.357185
0	0.000000	0.250000	0.408213
0	0.000000	0.750000	0.408213
0	0.500000	0.250000	0.408213
0	0.500000	0.750000	0.408213
0	0.750449	0.752479	0.459490
0	0.752886	0.250720	0.459214
0	0.252213	0.751875	0.459480
0	0.250251	0.251457	0.459215
0	0.502993	0.754427	0.511192
0	0.502699	0.252800	0.509516
0	0.002977	0.752986	0.510546
0	0.003071	0.254171	0.510629
0	0.753866	0.749864	0.562470
0	0.748558	0.257714	0.560876
0	0.250333	0.751737	0.562427
0	0.255807	0.256240	0.560877
0	0.752730	0.503180	0.509811
0	0.753942	0.003351	0.510614
0	0.253915	0.503321	0.510090
0	0.252642	0.003288	0.510354
0	0.502108	0.754569	0.611751
0	0.504944	0.260278	0.612119
0	0.001677	0.763749	0.614844
0	0.005039	0.252632	0.610654
0	0.760750	0.506768	0.611444
0	0.750285	0.007641	0.609380
0	0.245860	0.507539	0.611049
0	0.254871	0.007329	0.609611
0	0.355419	0.759905	0.951604
Ο	0.647831	0.759728	0.951526
0	0.647831	0.759728	0.660791
0	0.355419	0.759905	0.660713
0	0.750000	0.750000	0.255129
0	0.750000	0.250000	0.255129
0	0.250000	0.750000	0.255129

0	0.250000	0.250000	0.255129
0	0.500000	0.750000	0.204101
0	0.500000	0.250000	0.204101
0	0.000000	0.750000	0.204101
0	0.000000	0.250000	0.204101
0	0.750000	0.500000	0.204101
0	0.750000	0.000000	0.204101
0	0.250000	0.500000	0.204101
0	0.250000	0.000000	0.204101
0	0.252642	0.003288	0.101964
0	0.253915	0.503321	0.102228
0	0.753942	0.003351	0.101704
0	0.752730	0.503180	0.102507
0	0.003071	0.254171	0.101689
0	0.002977	0.752986	0.101772
0	0.502699	0.252800	0.102802
0	0.502993	0.754427	0.101126
0	0.250251	0.251457	0.153102
Ο	0.252213	0.751875	0.152837
Ο	0.752886	0.250720	0.153103
0	0.750449	0.752479	0.152827

Most stable CO_2 adsorption configuration on SrO-terminated SrTiO₃(001) surface, as illustrated in Fig. 2a.

chemical name common	'Sr28 Ti24 C2 O80'
cell length a	7.88820
cell length b	7.88820
cell length c	38.64670
cell angle alpha	90
cell angle beta	90
cell angle gamma	90
space group name H-M al	t 'P 1'
loop_ _space_group_symop_operat 'x, y, z'	ion_xyz
loop_	
_atom_site_type_symbol	
_atom_site_fract_x	
_atom_site_fract_y	
_atom_site_fract_z	
Sr 0.000000 0.000000	0.4082130

0.000000	0.4082130
0.500000	0.4082130
0.000000	0.4082130
0.500000	0.4082130
0.000000	0.3061570
0.500000	0.3061570
0.000000	0.3061570
0.500000	0.3061570
0.011726	0.0033600
0.506977	0.0011180
0.000678	0.0010620
0.489235	0.9992690
0.489235	0.6130480
0.000678	0.6112560
0.506977	0.6112000
0.011726	0.6089580
0.494377	0.5098570
0.008432	0.5099880
0.498142	0.5099120
0.007758	0.5099670
0.500000	0.2041010
0.000000	0.2041010
0.500000	0.2041010
0.000000	0.2041010
0.007758	0.1023510
	0.000000 0.500000 0.000000 0.500000 0.000000 0.500000 0.000000 0.000000 0.011726 0.506977 0.000678 0.489235 0.489235 0.489235 0.000678 0.506977 0.011726 0.494377 0.008432 0.498142 0.007758 0.500000 0.500000 0.500000 0.000000 0.0007758

Sr	0.008262	0.498142	0.1024060
Sr	0.497871	0.008432	0.1023300
Sr	0.494203	0.494377	0.1024610
Ti	0.250000	0.250000	0.3571850
Ti	0.250000	0.750000	0.3571850
Ti	0.750000	0.250000	0.3571850
Ti	0 750000	0 750000	0.3571850
Ti	0 252587	0 253451	0.0484100
Ti	0 253884	0.751021	0.0470410
Ti	0.750162	0 254628	0.0470140
Ti	0.751632	0.751993	0.0547790
Ti	0.751632	0.751993	0 5575380
Ti	0.750162	0.754628	0.5653040
Ti	0.253884	0.751020	0.5652770
Ti	0.252587	0.253451	0.5639070
Ti	0.752053	0.255451	0.4577630
Ti	0.752033	0.752274	0.4605020
Ti	0.752511	0.255050	0.4604970
Ti	0.255645	0.755140	0.4593760
Ti	0.750000	0.251075	0.2551290
Ti	0.750000	0.250000	0.2551290
Ti	0.250000	0.750000	0.2551290
Ti	0.250000	0.250000	0.2551290
Ti	0.251662	0.251873	0.1529410
Ti	0.255645	0 753148	0 1518200
Ti	0.752911	0 255830	0 1518150
Ti	0 752053	0 752274	0 1545540
С	0.706921	0.707332	0.966475
Ċ	0.706921	0.707332	0.645843
Ō	0.250000	0.000000	0.357185
0	0.250000	0.500000	0.357185
0	0.750000	0.000000	0.357185
0	0.750000	0.500000	0.357185
0	0.250000	0.250000	0.408213
0	0.250000	0.750000	0.408213
0	0.750000	0.250000	0.408213
0	0.750000	0.750000	0.408213
0	0.000000	0.250000	0.357185
0	0.000000	0.750000	0.357185
0	0.500000	0.250000	0.357185
0	0.500000	0.750000	0.357185
0	0.249219	0.999519	0.049875
0	0.253835	0.499771	0.051332
0	0.749698	0.994025	0.052967
0	0.746278	0.504570	0.043052
0	0.250000	0.250000	0.306157

0	0.250000	0.750000	0.306157
0	0.750000	0.250000	0.306157
0	0.750000	0.750000	0.306157
0	0.999674	0.252807	0.049863
0	0.994098	0.745570	0.052907
0	0.499940	0.250030	0.051287
0	0.504558	0.749892	0.043175
0	0.253421	0.253325	0.999066
0	0.221377	0.745079	0.000125
0	0.746125	0.220896	0.000124
0	0.801212	0.800763	0.987780
0	0.801212	0.800763	0.624537
0	0.746125	0.220896	0.612193
0	0.221377	0.745079	0.612192
0	0.253421	0.253325	0.613252
0	0.504558	0.749892	0.569142
0	0.499940	0.250030	0.561030
0	0.994098	0.745570	0.559410
0	0.999674	0.252807	0.562454
0	0.730241	0.730134	0.511204
0	0.752202	0.263162	0.510363
0	0.263012	0.752161	0.510347
0	0.246553	0.246361	0.510110
0	0.746278	0.504570	0.569265
0	0.749698	0.994025	0.559350
0	0.253835	0.499771	0.560986
0	0.249219	0.999519	0.562443
0	0.499959	0.747674	0.457984
0	0.498766	0.248441	0.459675
0	0.996133	0.749065	0.461396
0	0.998773	0.246700	0.458908
0	0.749559	0.499869	0.457982
0	0.747621	0.996028	0.461411
0	0.247067	0.498610	0.459678
0	0.248487	0.998661	0.458893
0	0.759086	0.557831	0.958396
0	0.557898	0.760735	0.958385
0	0.557898	0.760735	0.653933
0	0.759086	0.557831	0.653921
0	0.750000	0.750000	0.204101
0	0.750000	0.250000	0.204101
0	0.250000	0.750000	0.204101
0	0.250000	0.250000	0.204101
0	0.500000	0.750000	0.255129
0	0.500000	0.250000	0.255129
0	0.000000	0.750000	0.255129

0	0.000000	0.250000	0.255129
0	0.750000	0.500000	0.255129
0	0.750000	0.000000	0.255129
0	0.250000	0.500000	0.255129
0	0.250000	0.000000	0.255129
0	0.248487	0.998661	0.153424
0	0.247067	0.498610	0.152639
0	0.747621	0.996028	0.150906
0	0.749559	0.499869	0.154335
0	0.998773	0.246700	0.153409
0	0.996133	0.749065	0.150921
0	0.498766	0.248441	0.152642
0	0.499959	0.747674	0.154333
0	0.246553	0.246361	0.102208
0	0.263012	0.752161	0.101971
0	0.752202	0.263162	0.101955
0	0.730241	0.730134	0.101114

CO₂ adsorption configuration on SrO-terminated SrTiO₃(001) surface, as illustrated in Fig. S7a.

chemical nam	e common	'Sr28 Ti24	4 C2 O80'
cell length a		7.88820	
cell length b		7 88820	
cell length c		38 64670	
cell_angle_alr	ha	90	
	ta	90	
angle	na mma	00	
_ccli_aligic_ga	\mathbf{H}	50 14 'D 1'	
_space_group_			
loon			
space group	symon onera	tion xyz	
_space_group_	symop_opera		
Λ, Υ, Ζ			
loop			
atom site ty	vpe symbol		
atom site fi	act x		
atom_site_fi	act v		
atom_site_fi	act z		
Sr 0 490931	0.506313	0 997930	
Sr 0.490989	0.500515	0.614259	
Sr = 0.4900037	0.307400	0.500000	
Sr = 0.006610	0.477053	0.008033	
Sr = 0.000010	0.507055	0.998055	
SI = 0.000702 Sr = 0.007344	0.307421	0.014233	
$51 \ 0.007544$ Sr 0.404127	0.497204	0.01782	
$51 \ 0.494157$ Sr 0.402572	0.009091	0.001/85	
$51 \ 0.493373$	0.010400	0.010407	
$51 \ 0.492829$ Sr 0.005606	0.011416	0.01002	
SI = 0.005000	0.010000	0.001902	
SI = 0.003230	0.010098	0.010300	
Sr 0.004290	0.011882	0.510452	
$51 \ 0.491857$	0.490337	0.102241	
Sr 0.009213	0.49/255	0.102258	
Sr 0.49490/	0.011393	0.101833	
Sr 0.0064/1	0.011040	0.10188/	
Sr 0.499995	0.499995	0.408208	
Sr 0.499995	0.499995	0.306160	
Sr 0.000005	0.499995	0.408208	
Sr 0.000005	0.499995	0.306160	
Sr 0.499995	0.000005	0.408208	
Sr 0.499995	0.000005	0.306160	
Sr 0.000005	0.000005	0.408208	
Sr 0.000005	0.000005	0.306160	
Sr 0.000005	0.000005	0.204104	
Sr 0.499995	0.000005	0.204104	

Sr	0.000005	0.499995	0.204104
Sr	0.499995	0.499995	0.204104
Ti	0.249774	0.258066	0.047710
Ti	0.249054	0.258725	0.564512
Ti	0.248485	0.253188	0.459463
Ti	0.749767	0.750284	0.055515
Ti	0.749188	0.750685	0.556733
Ti	0.746957	0.754201	0.457451
Ti	0.250017	0.752805	0.046882
Ti	0.749657	0.258170	0.045623
Ti	0 748990	0 258764	0 566575
Ti	0 248987	0 753456	0 565377
Ti	0 748602	0 257308	0 460801
Ti	0 246778	0 754833	0 460519
Ti	0.250861	0 252953	0.152830
Ti	0.752402	0.754088	0.154853
Ti	0 252942	0 754532	0.151783
Ti	0.750934	0.256973	0.151476
Ti	0.250005	0.250005	0.357184
Ti	0.250005	0.750000	0.357184
Ti	0.250005	0.750000	0.357184
Ti	0.750000	0.250005	0.357184
Ti	0.750000	0.250005	0.255129
Ti	0.250005	0.750000	0.255129
Ti	0.250005	0.750000	0.255129
Ti	0.250005	0.250005	0.255129
C	0.748240	0.703672	0.649880
C	0 747347	0 702997	0.962330
0	0 249799	0 255484	0.998622
Õ	0 249770	0 255974	0.613603
Õ	0 249820	0 245844	0 510136
Õ	0.500339	0 249801	0.050329
Õ	0.500516	0 250754	0.561892
Õ	0 500662	0 247824	0 459494
Õ	0 998873	0 251410	0 050246
Õ	0 999099	0.251855	0 561963
Õ	0.000504	0.246672	0 459425
Õ	0 250595	0 499043	0.051792
Õ	0 250366	0 499680	0.560459
Õ	0 250292	0 498157	0 459732
Õ	0 248918	0 999161	0.049383
õ	0 249229	0 999720	0.562854
õ	0.251446	0.998486	0.458954
Õ	0.750254	0.987819	0.049656
Õ	0.748572	0.506138	0.041388
Ō	0.993486	0.745613	0.047872
-			—

0	0.505496	0.747472	0.047291
0	0.505941	0.747866	0.564905
0	0.993781	0.746612	0.564558
0	0.749327	0.729744	0.510749
0	0.749343	0.506656	0.570984
0	0.750550	0.988471	0.562252
0	0.502623	0.747016	0.459524
0	0.751708	0.498936	0.458310
0	0.999273	0.748181	0.459770
0	0.750428	0.995331	0.461201
0	0.247984	0.739921	0.999804
0	0.749487	0.218086	0.999467
0	0.749676	0.217710	0.612705
0	0.248970	0.740552	0.612461
0	0.750449	0.258767	0.510802
0	0.251268	0.751982	0.510352
0	0.748915	0.540073	0.653931
0	0.749008	0.539402	0.958275
0	0.891851	0.782491	0.645925
0	0.890409	0.782564	0.966464
0	0.604037	0.781835	0.646500
0	0.602614	0.780370	0.965545
0	0.249424	0.245525	0.102138
0	0.499270	0.247359	0.152822
0	0.999128	0.246605	0.152849
0	0.248463	0.497905	0.152572
0	0.249200	0.998239	0.153324
0	0.749521	0.257482	0.101462
0	0.749167	0.498714	0.153839
0	0.500472	0.746901	0.152769
0	0.747940	0.730754	0.101524
0	0.997081	0.747675	0.152587
0	0.748401	0.995155	0.151191
0	0.249883	0.751525	0.101945
0	0.250005	0.250005	0.408208
0	0.250005	0.250005	0.306160
0	0.499995	0.250005	0.357184
0	0.000005	0.250005	0.357184
0	0.250005	0.499995	0.357184
0	0.250005	0.000005	0.357184
0	0.750000	0.499995	0.357184
0	0.750000	0.750000	0.408208
0	0.499995	0.750000	0.357184
0	0.750000	0.750000	0.306160
0	0.000005	0.750000	0.357184
0	0.750000	0.000005	0.357184

0	0.250005	0.750000	0.408208
0	0.750000	0.250005	0.408208
0	0.250005	0.750000	0.306160
0	0.750000	0.250005	0.306160
0	0.750000	0.250005	0.204104
0	0.250005	0.750000	0.204104
0	0.750000	0.000005	0.255129
0	0.000005	0.750000	0.255129
0	0.750000	0.750000	0.204104
0	0.499995	0.750000	0.255129
0	0.750000	0.499995	0.255129
0	0.250005	0.000005	0.255129
0	0.250005	0.499995	0.255129
0	0.000005	0.250005	0.255129
0	0.499995	0.250005	0.255129
0	0.250005	0.250005	0.204104

CO₂ adsorption configuration on SrO-terminated SrTiO₃(001) surface, as illustrated in Fig. S7b.

chemical nam	ie common	'Sr28 Ti24 C	2 080'
cell length a	_	7.88820	
cell length b		7.88820	
cell length c		38.64670	
cell angle alr	ha	90	
cell angle bet	ta	90	
	mma	90	
_con_angle_ga	name H_M	JU alt 'D 1'	
		41t I I	
loon			
snace group	symon onera	tion xyz	
space_group_	symop_opera		
л, у, 2			
loon			
atom site ty	vne svmbol		
atom_site_f	ract x		
atom_site_fi	ract v		
atomsite_fi	ract_z		
$S_r = 0.000000$		0 408214	
Sr = 0.0000000	0.000000	0.408214	
Sr = 0.0000000	0.00000	0.408214 0.408214	
Sr = 0.500000	0.000000	0.408214	
SI = 0.300000	0.300000	0.406214	
SI = 0.000000	0.000000	0.300139	
SI = 0.000000	0.300000	0.300139	
Sr 0.500000	0.000000	0.306159	
Sr 0.500000	0.500000	0.306139	
Sr 0.006972	0.997554	0.002133	
Sr 0.006972	0.502446	0.002133	
Sr 0.490068	0.995/9/	0.001527	
Sr 0.490068	0.504203	0.001527	
Sr 0.490073	0.504185	0.610787	
Sr 0.490073	0.995815	0.610/8/	
Sr 0.006938	0.502438	0.610174	
Sr 0.006938	0.997562	0.610174	
Sr 0.494897	0.494091	0.509757	
Sr 0.494897	0.005909	0.509757	
Sr 0.000843	0.494153	0.509826	
Sr 0.000843	0.005847	0.509826	
Sr 0.500000	0.500000	0.204103	
Sr 0.500000	0.000000	0.204103	
Sr 0.000000	0.500000	0.204103	
Sr 0.000000	0.000000	0.204103	
Sr 0.000839	0.005866	0.102483	
Sr 0.000839	0.494134	0.102483	

Sr	0.494898	0.005918	0.102550
Sr	0.494898	0.494082	0.102550
Ti	0.250000	0.250000	0.357186
Ti	0.250000	0.750000	0.357186
Ti	0.750000	0.250000	0.357186
Ti	0.750000	0.750000	0.357186
Ti	0.249319	0.250000	0.048134
Ti	0.245003	0.750000	0.048960
Ti	0.747771	0.250000	0.046235
Ti	0.746656	0.750000	0.053849
Ti	0.746650	0.750000	0.558468
Ti	0.747734	0.250000	0.566070
Ti	0.245010	0.750000	0.563361
Ti	0.249306	0.250000	0.564169
Ti	0.744854	0.750000	0.457872
Ti	0.748369	0.250000	0.460500
Ti	0.247283	0.750000	0.460149
Ti	0.247367	0.250000	0.459534
Ti	0.750000	0.750000	0.255131
Ti	0.750000	0.250000	0.255131
Ti	0.250000	0.750000	0.255131
Ti	0.250000	0.250000	0.255131
Ti	0.247373	0.250000	0.152778
Ti	0.247250	0.750000	0.152157
Ti	0.748377	0.250000	0.151808
Ti	0.744822	0.750000	0.154436
С	0.742934	0.750000	0.963407
С	0.742900	0.750000	0.648919
0	0.250000	0.000000	0.357186
0	0.250000	0.500000	0.357186
0	0.750000	0.000000	0.357186
0	0.750000	0.500000	0.357186
0	0.250000	0.250000	0.408214
0	0.250000	0.750000	0.408214
0	0.750000	0.250000	0.408214
0	0.750000	0.750000	0.408214
0	0.000000	0.250000	0.357186
0	0.000000	0.750000	0.357186
0	0.500000	0.250000	0.357186
0	0.500000	0.750000	0.357186
0	0.251646	1.000291	0.050327
0	0.251646	0.499709	0.050327
0	0.751435	0.997204	0.048439
0	0.751435	0.502796	0.048439
0	0.250000	0.250000	0.306159
0	0.250000	0.750000	0.306159

0	0.750000	0.250000	0.306159
0	0.750000	0.750000	0.306159
0	0.000751	0.250000	0.049218
0	0.999350	0.750000	0.054193
0	0.501209	0.250000	0.050733
0	0.504544	0.750000	0.045652
0	0.253929	0.250000	0.998947
0	0.229777	0.750000	0.000842
0	0.747239	0.250000	0.998354
0	0.796138	0.750000	0.997320
0	0.579522	0.750000	0.959437
0	0.856222	0.750000	0.940718
0	0.856199	0.750000	0.671608
0	0.579485	0.750000	0.652889
0	0.796097	0.750000	0.615006
0	0.747206	0.250000	0.613953
0	0.229730	0.750000	0.611474
0	0.253956	0.250000	0.613356
0	0.504518	0.750000	0.566673
0	0.501190	0.250000	0.561572
0	0.999319	0.750000	0.558122
0	0.000734	0.250000	0.563084
0	0.734189	0.750000	0.511165
0	0.753946	0.250000	0.510262
0	0.266193	0.750000	0.510114
0	0.247695	0.250000	0.510251
0	0.751402	0.502793	0.563877
0	0.751402	0.997207	0.563877
0	0.251626	0.499717	0.561980
0	0.251626	1.000283	0.561980
0	0.502672	0.750000	0.457888
0	0.500946	0.250000	0.459669
0	0.000133	0.750000	0.461196
0	0.001017	0.250000	0.458899
0	0.751811	0.501714	0.459697
0	0.751811	-0.001714	0.459697
0	0.250922	0.500068	0.459322
0	0.250922	-0.000068	0.459322
0	0.750000	0.750000	0.204103
0	0.750000	0.250000	0.204103
0	0.250000	0.750000	0.204103
0	0.250000	0.250000	0.204103
0	0.500000	0.750000	0.255131
0	0.500000	0.250000	0.255131
0	0.000000	0.750000	0.255131
0	0.000000	0.250000	0.255131

0	0.750000	0.500000	0.255131
0	0.750000	0.000000	0.255131
0	0.250000	0.500000	0.255131
0	0.250000	0.000000	0.255131
0	0.250958	-0.000070	0.152988
0	0.250958	0.500070	0.152988
0	0.751849	-0.001717	0.152615
0	0.751849	0.501717	0.152615
0	0.001038	0.250000	0.153419
0	0.000169	0.750000	0.151103
0	0.500970	0.250000	0.152634
0	0.502689	0.750000	0.154422
0	0.247667	0.250000	0.102059
0	0.266227	0.750000	0.102191
0	0.754011	0.250000	0.102047
0	0.734210	0.750000	0.101152

CO₂ adsorption configuration on SrO-terminated SrTiO₃(001) surface, as illustrated in Fig. S7c.

chemical nam	ne common	'Sr28 Ti24 C2	O80'
cell length a	—	7.88820	
cell length b		7.88820	
cell length c		38.64670	
cell angle alr	ha	90	
cell angle he	ta	90	
	mma	90	
_con_angle_ga	name H ₋ M a	JU 1t 'P 1'	
		<i>iii i i</i>	
loon			
snace group	symon opera	tion xyz	
$_{v v z'}$	symop_opera	tion_XyZ	
л, у, 2			
loon			
atom site ty	vne svmbol		
atom_site_f	ract x		
atom_site_fi	ract_x		
	ract_y		
$S_r = 0.000000$		0 /0821/	
Sr = 0.000000	0.000000	0.408214	
Sr = 0.000000	0.00000	0.408214 0.408214	
Sr = 0.500000	0.000000	0.408214	
SI = 0.300000	0.300000	0.406214	
SI = 0.000000	0.000000	0.306139	
SI = 0.000000	0.300000	0.306139	
Sr 0.500000	0.000000	0.306159	
Sr 0.500000	0.500000	0.306159	
Sr -0.002230	-0.002230	0.000080	
Sr 0.004021	0.496354	0.003951	
Sr 0.496354	0.004021	0.003951	
Sr 0.502575	0.502575	0.000024	
Sr 0.502571	0.502571	0.612283	
Sr 0.496351	0.004026	0.608357	
Sr 0.004026	0.496351	0.608357	
Sr -0.002235	-0.002235	0.612230	
Sr 0.495485	0.495485	0.509980	
Sr 0.495693	0.004483	0.509483	
Sr 0.004483	0.495693	0.509483	
Sr 0.004691	0.004691	0.509979	
Sr 0.500000	0.500000	0.204103	
Sr 0.500000	0.000000	0.204103	
Sr 0.000000	0.500000	0.204103	
Sr 0.000000	0.000000	0.204103	
Sr 0.004699	0.004699	0.102332	
Sr 0.004489	0.495689	0.102828	

Sr	0.495689	0.004489	0.102828
Sr	0.495481	0.495481	0.102330
Ti	0.250000	0.250000	0.357186
Ti	0.250000	0.750000	0.357186
Ti	0.750000	0.250000	0.357186
Ti	0.750000	0.750000	0.357186
Ti	0.250169	0.250169	0.048031
Ti	0.250197	0.750134	0.047749
Ti	0.750134	0.250197	0.047749
Ti	0.750152	0.750152	0.054036
Ti	0.750149	0.750149	0.558273
Ti	0.750135	0.250192	0.564554
Ti	0.250192	0.750135	0.564554
Ti	0.250166	0.250166	0.564273
Ti	0.750072	0.750072	0.457767
Ti	0.750077	0.250069	0.460250
Ti	0.250069	0.750077	0.460250
Ti	0.250071	0.250071	0.459567
Ti	0.750000	0.750000	0.255131
Ti	0.750000	0.250000	0.255131
Ti	0.250000	0.750000	0.255131
Ti	0.250000	0.250000	0.255131
Ti	0.250073	0.250073	0.152748
Ti	0.250070	0.750078	0.152057
Ti	0.750078	0.250070	0.152057
Ti	0.750075	0.750075	0.154545
С	0.750101	0.750101	0.961298
С	0.750110	0.750110	0.651018
0	0.250000	0.000000	0.357186
0	0.250000	0.500000	0.357186
0	0.750000	0.000000	0.357186
0	0.750000	0.500000	0.357186
0	0.250000	0.250000	0.408214
0	0.250000	0.750000	0.408214
0	0.750000	0.250000	0.408214
0	0.750000	0.750000	0.408214
0	0.000000	0.250000	0.357186
Ο	0.000000	0.750000	0.357186
Ο	0.500000	0.250000	0.357186
Ο	0.500000	0.750000	0.357186
Ο	0.251390	1.000047	0.050339
0	0.248624	0.499959	0.050373
0	0.749451	0.997653	0.049305
0	0.750587	0.502395	0.049339
0	0.250000	0.250000	0.306159
0	0.250000	0.750000	0.306159

0	0.750000	0.250000	0.306159
0	0.750000	0.750000	0.306159
0	1.000047	0.251390	0.050339
0	0.997653	0.749451	0.049305
0	0.499959	0.248624	0.050373
0	0.502395	0.750587	0.049339
0	0.250060	0.250060	0.999140
0	0.250099	0.749847	-0.000397
0	0.749847	0.250099	-0.000397
0	0.749826	0.749826	0.997135
0	0.853192	0.853192	0.947269
0	0.647234	0.647234	0.947149
Ō	0.647220	0.647220	0.665161
0	0.853183	0.853183	0.665052
0	0.749856	0.749856	0.615180
0	0.749847	0.250084	0.612701
0	0.250084	0.749847	0.612701
Ō	0.250064	0.250064	0.613164
0	0.502403	0.750590	0.562969
0	0.499961	0.248626	0.561933
0	0.997649	0.749451	0.562996
0	1.000049	0.251393	0.561967
Ō	0.750087	0.750087	0.511095
0	0.750025	0.249958	0.510161
0	0.249958	0.750025	0.510161
0	0.249952	0.249952	0.510058
0	0.750590	0.502403	0.562969
0	0.749451	0.997649	0.562996
0	0.248626	0.499961	0.561933
0	0.251393	1.000049	0.561967
0	0.501607	0.750022	0.459598
0	0.500097	0.249974	0.459244
0	-0.001613	0.749951	0.459584
0	-0.000117	0.250018	0.459237
0	0.750022	0.501607	0.459598
0	0.749951	-0.001613	0.459584
0	0.249974	0.500097	0.459244
0	0.250018	-0.000117	0.459237
0	0.750000	0.750000	0.204103
0	0.750000	0.250000	0.204103
0	0.250000	0.750000	0.204103
0	0.250000	0.250000	0.204103
0	0.500000	0.750000	0.255131
0	0.500000	0.250000	0.255131
0	0.000000	0.750000	0.255131
0	0.000000	0.250000	0.255131

O 0.750000	0.500000	0.255131
O 0.750000	0.000000	0.255131
O 0.250000	0.500000	0.255131
O 0.250000	0.000000	0.255131
O 0.250018	-0.000118	0.153077
O 0.249974	0.500097	0.153070
O 0.749949	-0.001618	0.152728
O 0.750021	0.501611	0.152712
O -0.000118	0.250018	0.153077
O -0.001618	0.749949	0.152728
O 0.500097	0.249974	0.153070
O 0.501611	0.750021	0.152712
O 0.249952	0.249952	0.102254
O 0.249946	0.750022	0.102150
O 0.750022	0.249946	0.102150
O 0.750100	0.750100	0.101212

CO₂ adsorption configuration on SrO-terminated SrTiO₃(001) surface, as illustrated in Fig. S7d.

chemical nam	e common	'Sr28 Ti24 C	2 080'
cell length a	—	7.88820	
cell length b		7.88820	
cell length c		38.64670	
cell angle alp	ha	90	
cell angle bet	ta	90	
cell angle ga	mma	90	
space group	name H-M a	alt 'P 1'	
loop_			
_space_group_s	symop_opera	tion_xyz	
'x, y, z'			
loop_			
_atom_site_ty	/pe_symbol		
_atom_site_fi	ract_x		
_atom_site_fi	ract_y		
	act_z	0 400014	
Sr 0.000000	0.000000	0.408214	
Sr = 0.000000	0.300000	0.408214	
SI = 0.500000	0.000000	0.408214	
SI = 0.300000	0.300000	0.408214	
SI = 0.000000	0.000000	0.306159	
SI = 0.000000	0.300000	0.300139	
Sr = 0.500000	0.000000	0.306159	
Sr = 0.006816	0.901668	0.001736	
Sr 0.006816	0.591000	0.001736	
Sr 0.493184	0.901668	0.001736	
Sr 0.493184	0.508332	0.001736	
Sr 0.493187	0.508322	0.610572	
Sr 0.493187	0.991678	0.610572	
Sr 0.006813	0.508322	0.610572	
Sr 0.006813	0.991678	0.610572	
Sr 0.496563	0.493597	0.509805	
Sr 0.496563	0.006403	0.509805	
Sr 0.003437	0.493597	0.509805	
Sr 0.003437	0.006403	0.509805	
Sr 0.500000	0.500000	0.204103	
Sr 0.500000	0.000000	0.204103	
Sr 0.000000	0.500000	0.204103	
Sr 0.000000	0.000000	0.204103	
Sr 0.003441	0.006408	0.102504	
Sr 0.003441	0.493592	0.102504	

Sr	0.496559	0.006408	0.102504
Sr	0.496559	0.493592	0.102504
Ti	0.250000	0.250000	0.357186
Ti	0.250000	0.750000	0.357186
Ti	0.750000	0.250000	0.357186
Ti	0.750000	0.750000	0.357186
Ti	0 250000	0 250000	0 047397
Ti	0.250000	0.750000	0.049380
Ti	0 750000	0 250000	0.046033
Ti	0 750000	0.750000	0.054419
Ti	0 750000	0 750000	0 557891
Ti	0 750000	0.250000	0.566273
Ti	0.250000	0.750000	0.562928
Ti	0.250000	0.250000	0 564903
Ti	0.750000	0.750000	0.457715
Ti	0.750000	0.250000	0.460522
Ti	0.250000	0.250000	0.459889
Ti	0.250000	0.750000	0.459678
Ti	0.750000	0.250000	0.255131
Ti	0.750000	0.250000	0.255131
Ti	0.250000	0.250000	0.255131
Ti	0.250000	0.250000	0.255131
Ti	0.250000	0.250000	0.152633
Ti	0.250000	0.250000	0.152421
Ti	0.750000	0.250000	0.151786
Ti	0 750000	0.750000	0 154595
C	0 750000	0.750000	0.963359
C	0.750000	0.750000	0.648966
$\tilde{0}$	0.250000	0.000000	0 357186
Õ	0.250000	0.500000	0.357186
Õ	0 750000	0.000000	0 357186
Õ	0 750000	0.500000	0 357186
Ō	0.250000	0.250000	0.408214
0	0.250000	0.750000	0.408214
0	0.750000	0.250000	0.408214
0	0.750000	0.750000	0.408214
0	0.000000	0.250000	0.357186
0	0.000000	0.750000	0.357186
0	0.500000	0.250000	0.357186
0	0.500000	0.750000	0.357186
0	0.250000	1.000493	0.050155
Ō	0.250000	0.499507	0.050155
Ō	0.750000	0.997216	0.048751
0	0.750000	0.502784	0.048751
0	0.250000	0.250000	0.306159
0	0.250000	0.750000	0.306159

0	0.750000	0.250000	0.306159
0	0.750000	0.750000	0.306159
0	0.999728	0.250000	0.049698
0	0.998439	0.750000	0.050296
0	0.500272	0.250000	0.049698
0	0.501561	0.750000	0.050296
0	0.250000	0.250000	0.998607
0	0.250000	0.750000	0.000694
0	0.750000	0.250000	0.998224
0	0.750000	0.750000	0.998823
0	0.603290	0.750000	0.949551
0	0.896710	0.750000	0.949551
Ō	0.896705	0.750000	0.662776
0	0.603295	0.750000	0.662776
Ō	0.750000	0.750000	0.613498
Ō	0.750000	0.250000	0.614084
Ō	0.250000	0.750000	0.611614
Ō	0.250000	0.250000	0.613694
0	0.501567	0.750000	0.562011
Ō	0.500274	0.250000	0.562607
0	0.998433	0.750000	0.562011
Ō	0.999726	0.250000	0.562607
0	0.750000	0.750000	0.510819
0	0.750000	0.250000	0.510228
0	0.250000	0.750000	0.510141
0	0.250000	0.250000	0.510185
0	0.750000	0.502781	0.563558
0	0.750000	0.997219	0.563558
0	0.250000	0.499512	0.562147
0	0.250000	1.000488	0.562147
0	0.501351	0.750000	0.459480
0	0.499929	0.250000	0.459298
0	-0.001351	0.750000	0.459480
0	0.000071	0.250000	0.459298
0	0.750000	0.501653	0.459595
0	0.750000	-0.001653	0.459595
0	0.250000	0.500275	0.459292
0	0.250000	-0.000275	0.459292
0	0.750000	0.750000	0.204103
0	0.750000	0.250000	0.204103
0	0.250000	0.750000	0.204103
0	0.250000	0.250000	0.204103
0	0.500000	0.750000	0.255131
0	0.500000	0.250000	0.255131
0	0.000000	0.750000	0.255131
0	0.000000	0.250000	0.255131

O 0.750000	0.500000	0.255131
O 0.750000	0.000000	0.255131
O 0.250000	0.500000	0.255131
O 0.250000	0.000000	0.255131
O 0.250000	-0.000277	0.153020
O 0.250000	0.500277	0.153020
O 0.750000	-0.001656	0.152715
O 0.750000	0.501656	0.152715
O 0.000070	0.250000	0.153015
O -0.001352	0.750000	0.152830
O 0.499930	0.250000	0.153015
O 0.501352	0.750000	0.152830
O 0.250000	0.250000	0.102125
O 0.250000	0.750000	0.102167
O 0.750000	0.250000	0.102082
O 0.750000	0.750000	0.101490