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1 Pulse sequences and observer subsequence decays
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Fig. S1: Schematic representation of pulse sequences for echo decay measurements.
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Fig. S2: Decay traces (log scale) of Hahn echo (grey), 4-pulse (red) and 5-pulse DEER
(black) observer subsequences obtained at Q band at a temperature of 50 K. Dashed cyan
lines are fits to the Hahn echo decay. (a) 40 µM TEMPOL in H2O/glycerol (no deutera-
tion). Stretched exponential fit to the Hahn echo decay with (κ ≈ 2.4) and Tm ≈ 4.6 µs.
(b) 20 µM singly labeled WALP23 (W3R1) in DOPC bilayer/H2O. Monoexponential fit
to the Hahn echo decay with Tm ≈ 1.8 µs (red dashed line).
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2 Various pump pulses in symmetric 4-DEER

-0.4 0 0.4

N
o

rm
a

liz
e

d
 I

n
te

n
si

ty

0.5

0.75

1.0

t (µs)

gaussian

rectangular

-0.4 0 0.4

N
o

rm
a

liz
e

d
 I

n
te

n
si

ty

0.5

0.75

1.0

t (µs)

gaussian

HS{6,1} down

-0.4 0 0.4
N

o
rm

a
liz

e
d

 I
n

te
n

si
ty

0.5

0.75

1.0

t (µs)

gaussian

HS{1,6} up

0.8 0.8 0.8

(b)(a) (c)

Fig. S3: 4-pulse DEER measurements with symmetric (Carr-Purcell) timings of WALP23
(A7R1,W22R1). The respective pump pulse was a monochromatic pulse of 12 ns length
(a) or 200 ns HS16 pulse with increasing (b) or decreasing (c) frequency. For comparison
of the (a)symmetry in the DEER signal, a Gaussian is overlaid. No considerable difference
in asymmetry of the DEER signal measured with HS16 pump pulse with respect to the
DEER signal measured with the rectangular monochromatic pump pulse is observed.

3 Comparison of Phase Cycling and Application of shift

in 5-pulse DEER
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Fig. S4: Relaxation and 5-pulse DEER measurements with 64-step phase cycle [1] are
compared to measurements with a time shift δ of the last pulse. Relaxation traces mea-
sured for TEMPOL in H2O/glycerol for 5-pulse DEER observer subsequence (left). 5-
pulse DEER traces of the rigid biradical MSA236 in deuterated ortho-terphenyl (right).
Dark red: measurement with 64-step phase cycle and no shift; Light red: measurement
with shift δ and 8-step phase cycle, i.e. [+(+x)-(-x)] on the π/2 pulse and [+(+x)-(+y)+(-
x)-(-y)] on the moving pump pulse. The measurements with time shift and 8-step phase
cycle show no deviation from the measurements with the full phase cycle. Measurements
were performed at Q band, 50 K.
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4 Nuclear Modulation Averaging
Implementing nuclear modulation averaging analogously to the way it is implemented in
4-pulse DEER leads to broadening of the partial excitation artefact (Fig. S5a,b). The
dynamical decoupling condition is preserved by incrementing all observer subsequence
delays simultaneously. Hereby, the delay (τ + δ) before the last observer π-pulse is in-
cremented by twice the nuclear modulation averaging increment and the delay (τ/2 + δ)
before the detection event is incremented by once the nuclear modulation averaging incre-
ment (Fig. S5a). Consequently, the artefact gets stepwise shifted to later time, while the
main 5-pulse DEER signal remains at the same time t′. If the partial excitation artefact
is not completely suppressed experimentally and has to be removed in data processing,
such broadening of the partial excitation artefact leads to erroneous correction.
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Fig. S5: Two possible implementations of nuclear modulation averaging in 5-pulse DEER
(shifting of pulses indicated by horizontal arrows) and corresponding DEER traces from
WALP23 (A7R1, W22R1) at Q band, 50 K (averaging 8 · 16 ns). For comparison, 5-
pulse DEER traces are also shown shifted and scaled to the partial excitation artefact
(black). (a) Pulse sequence preserving the dynamical decoupling condition of the observer
subsequence. (b) 5-pulse DEER traces measured with and without nuclear modulation
averaging corresponding to the pulse sequence shown in (a). Pump pulses were rectan-
gular (12 ns). (c) Pulse sequence avoiding broadening of the partial excitation artefact.
(d) 5-pulse DEER traces measured with nuclear modulation averaging corresponding to
the pulse sequence shown in (b). Pump pulses were HS{1,6}, 100 ns long, 150 MHz wide,
offset 70 MHz from νobs.
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To circumvent broadening of the artefact, we kept the delay between the π/2-pulse
and the standing pump pulse constant (Fig. S5c). To counteract the resulting shift of the
main 5-pulse signal with t0, we simultaneously increment the initial delay t′ before the
moving pump pulse. In this implemention of nuclear modulation averaging, the dynamical
decoupling condition is not strictly preserved. However, as the change in delays by nuclear
averaging is usually small in relation to τ , the loss in signal intensity is expected to be
minor. Broadening of the partial excitation artefact was successfully suppressed with this
implementation of nuclear modulation averaging (Fig. S5c,d).

Note, however, that for most of our measurements, no nuclear modulation averaging
was necessary. Application of nuclear modulation averaging in 5-pulse DEER therefore
still remains to be rigorously studied.

5 Distance distributions extracted from 4- and 5-pulse

DEER data
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Fig. S6: Distance distributions P (r) from 4-pulse (red) and 5-pulse DEER (black).
(a) P(r) from X-band data fromWALP mutant A7R1/W22R1 shown in Fig. 6 of the main
paper. (b) Uncertainty estimates for P (r) from 5-pulse DEER measured with τ = 8 µs
and 4-pulse DEER acquired with τ = 5 µs for an HDL particle (Fig. 8(a) of main paper).
(c) Uncertainty estimates for P (r) from 5-pulse DEER measured for τ = 10 µs and 4-pulse
DEER acquired with τ = 5 µs for an HDL particle (Fig. 8(b) of main paper). Uncertainty
estimates were computed with the Validation tool (DeerAnalysis).[2]
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6 Product Operator Calculations
The pulse sequence was described by a series of pulses and free evolution under the
Hamiltonian Ĥ0.

Ĥ0 = ωddŜo,zŜp,z (1)

Pulses are denoted as βŜk
with flip angle β acting on spin k (k = o observer, k = p

pumped spin). i.e. πŜp
is a π pulse acting on the pumped spin. Free evolution under the

Hamiltonian Ĥ0 for the time t is denoted by Ĥ0(t). For the "ideal" 5-pulse pathway, the
following sequence results:

σeq
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πŜp−−→ σ3
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πŜp−−→ σ7

Ĥ0(τ−t′+δ)−−−−−−−→ σ8

πŜo−−→ σ9

Ĥ0(τ/2+δ)−−−−−−→ σ10

(2)

With the full expressions for σ, for the "ideal" 5-pulse DEER pathway one obtains
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The expression for the coherence transfer pathway 2 in table 1 in the main paper (first
band overlap artefact) is obtained as follows:

σeq = −Iz − Sz (4)
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The expression for coherence transfer pathway 3 (second band overlap artefact) results
from:

σeq = −Iz − Sz (5)
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Ĥ0(τ−t′+δ)−−−−−−−→ − cos

[
d
(

2t0 + δ +
τ

2
− 2t′

)]
Iy − Sz + 2SzIx sin

[
d
(

2t0 + δ +
τ

2
− 2t′

)]
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Detected are only terms which correspond to transverse magnetization, i.e. Ix and Iy.
Accordingly, the argument of the cosine modulation of Iy of the final density operator is
used to obtain the zero time of the individual contributions in Table 1 of the main paper.
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7 Crossing echoes on incoherent spectrometers
Experimental 5-pulse DEER traces recorded on the incoherent spectrometer (Bruker
Elexsys E680) contained a distortion at late dipolar evolution times (Fig. 7 in the main
text). According to Tait and Stoll [1], there are several echoes that cross the wanted
DEER echo within the last quarter of the 5-pulse DEER trace. We observed that the
echoes cross at a time t′ that varies linearly with t0 (see Fig. S5 for delay nomenclature).
According to the notation in the paper by Tait and Stoll, this corresponds to a change
in tDEER,cross with 2t2 (where t2 is the delay between the static pump pulse and the first
refocusing observer pulse) due to a different definition of the time axis. This observa-
tion eliminates all but three coherence transfer pathways satisfying these requirements.
They are summarized in Table S1 (nomenclature of echoes according to Tait and Stoll).[1]
Among those echoes, PE1p′p and dPE[1p′p]3 share the property that neither the π observer
pulse in between the two pump pulses nor the two pump pulses taken together change
the observer spin coherence order. The signal due to such coherence transfer pathways is
not expected to average even if the pump pulses are incoherent.

Table S1: Echoes in forward 5-DEER with 3
4
τ ≤ t′ ≤ τ according to Tait and Stoll [1]

that shift linearly with t0. Coherence order change by the individual pulses is indicated.

Echo obs. coh. order t′ π/2 pumpstat πobs 1 pumpvar πobs 2

PE1p′p - + + - - τ + δ − t0 −1 2 0 −2 0

dPE[1p′p]3 + 0 0 + - τ − t0 1 −1 0 1 −2
SE(SE1p′2)p3 - 0 + 0 - τ + δ − t0 −1 1 1 −1 −1

Experiments on the commercial spectrometer featuring incoherent pump-observer
excitation with phase-locked pump pulses (within one individual scan) and using only
the pulses needed to generate the corresponding coherence transfer pathway revealed that
both PE1p′p and dPE[1p′p]3 contribute to the echo crossing artefact in question. The former,
stemming from an electron coherence excited by the first π/2 observer pulse and refocused
by two pump pulses, makes a smaller contribution. The latter (dPE[1p′p]3 pathway), is
a virtual echo formed by the same pulses as in PE1p′p that is refocused by the second
observer π pulse. This echo made the strongest contribution to the echo crossing artefact
in the 5-pulse DEER trace because for a long time interval magnetization is stored along z
where it decays with the longitudinal relaxation time. In contrast, for the echo associated
with the PE1p′p pathway coherence always decays with the transverse relaxation time.

Separation of the individual crossing echo contributions was performed by phase
cycling [3] on the home-built coherent spectrometer (Fig. S7). When the phase of both
pump pulses was stepped together selecting a coherence order change 0 by a 4-step phase
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cycle [+(+x)+(+y)+(-x)+(-y)], all crossing echoes vanish except for two contributions
with timings τ + δ − t0 and τ − t0 (green trace). This corresponds to the situation
encountered with a spectrometer with incoherent pump pulse channel (Fig 7 main text).
Selecting coherence order change 2 by the last observer π pulse by a [+(+x)-(+y)+(-x)-
(-y)] phase cycle on this pulse eliminates the echo PE1p′p because this echo features a
coherence order change of 0 for this pulse (purple trace). If instead of the second observer
π pulse the first observer π pulse is phase cycled, again selecting coherence order change 2
by a 4 step [+(+x)-(+y)+(-x)-(-y)] phase cycle, both PE1p′p and dPE[1p′p]3 crossing echo
contributions are eliminated due to their coherence order change 6= 2 (yellow trace). The
5-pulse DEER trace acquired with this phase cycle shows no deviation from the trace
recorded with a 128 step phase cycle varying the phases of all pulses (blue) or the trace
recorded phase cycling all three observer pulses (orange in Fig. S7).
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Fig. S7: Phase cycling in 5-pulse DEER. DEER traces were recorded with 32 ns observer
pulses and rectangular 12 ns pump pulses, offset from the observer frequency by 100 MHz.
Phase cycling is indicated as ( ) for 2-step and [ ] for 4-step, where the asterisk denotes that
the two pump pulses were phase cycled simultaneously to mimic measurement conditions
of a spectrometer with incoherent pump pulse channel. Traces offset for clarity.
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8 Implementation of HSh and HS{h1,h2} pulses
The selectivity of the HS pulse is a direct consequence of offset-independent adiabatic-
ity [4]: The modulation functions formally establish offset-independent adiabaticity for
all excited spins, even for those at the edges of the pulse. In this sense, the HS1 pulse
allows for an adiabatic edge truncation provided that β is large enough. The adiabaticity
factor of the HS1 pulse [5] can be rewritten as

Q HS1
crit =

4π · ν21,max · tp
β ·∆f

=
2

β
·Q lin

crit (6)

where Q lin
crit is the expression for constant-rate chirps. As compared to a constant-rate

chirp, the selective inversion profile of the HS1 pulse (β ≈ 10) therefore degrades the
adiabaticity by a factor of 5.

Since HS1 pulses for selective inversion (β ≈ 10) have such a pronounced trade-off in
adiabaticity [5], HS pulses of higher orders have been introduced [4], which are referred
to as HSh pulses. The modulation functions for these pulses are given in the main text.

For h = 1, the solution to the integral in Eq. (5) in the main text is given in Eq. (6)
in the main text. For h > 1, the integral needs to be solved numerically. Accordingly, also
the adiabaticity Qcrit needs to be computed numerically. Note that a variety of definitions
of the parameters β,h and the time axis t̃ = t/tp for HS1 and HSh pulses is used in the
literature. With our choice and the normalization of the integral in Eq. (5) in the main
text, the sweep width ∆f is independent on both h and β.

The influence of h on selectivity is shown in Fig. S8. Panels (a) and (b) illustrate the
amplitude and frequency modulation functions, respectively, in ascending order n from
1 to 8. The arrows denote the changes along ascending h. In order to have the same
adiabaticity Qcrit for all orders h, the pulse lengths were chosen as tp = [400, 188, 143,
124, 114, 108, 103, 100] ns. The parametrization of the selectivity of pulses with order
h becomes apparent in the simulations of

〈
Ŝz

〉
for Qcrit = 5 and Qcrit = 2 · log(2)/π in

panels (c) and (d), respectively.

The spectral distribution of the spin packets to be excited may not require frequency
selectivity on both sides of the excitation window. One can therefore combine HSh pulses
of different orders. Such combined HSh pulses are referred to as HS{h1,h2} pulses, where
h1 is the order of the first half of the combined pulse and h2 is the order of the second
half. If h1 6= h2, we refer to an asymmetric HS pulse.
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Fig. S8: Selectivity parametrization of HSh pulses with ∆f = 400 MHz, β = 10, identical
peak amplitude and identical adiabaticity Qcrit. The illustrated curves correspond to
ascending orders h from 1 to 8. The consequences of increasing h are illustrated by means
of arrows. (a) Amplitude modulation functions ν1(t). (b) Frequency modulation functions
fi(t), vertically displaced. (c) Simulation of
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for Qcrit = 5. (d) Simulation of
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for Qcrit = 2 · log(2)/π, which corresponds to a peak amplitude of ν1 = 18.74 MHz. All
simulations performed with SPIDYAN.[6]

The superior frequency selectivity of HSh and HS{h1,h2} pulses thanks to their
adiabatic edge truncation is interesting for a number of applications in EPR spectroscopy.
However, these pulses only fulfill offset-independent adiabaticity in the absence of any
bandwidth limitations imposed by the resonator. The incorporation of a resonator profile
ν1(f) into HS pulses is performed in an analogous manner to the compensation of constant-
rate chirps introduced previously.[7] As a result, the procedure generates a HS{h1,h2}
pulse with its time axis warped for offset-independent adiabaticity in presence of the
bandwidth limitation ν1(f).[8]
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