Theoretical study of complexes formed between cations and curved aromatic systems:

electrostatics does not always control cation- π interaction

Authors: Jorge A. Carrazana-García¹, Enrique M. Cabaleiro-Lago¹, Jesús Rodríguez-Otero²

¹ Departamento de Química Física, Facultade de Ciencias, Universidade de Santiago de Compostela. Campus de Lugo. Avenida Alfonso X El Sabio s/n, Lugo 27002, Spain.

² Centro de investigación en Química Biolóxica e Materiais Moleculares, CIQUS, Universidade de Santiago de Compostela, Rúa Jenaro de la Fuente s/n, Santiago de Compostela, 15782, Spain.

Keywords: non-covalent interactions, cation- π interaction, interaction energy analysis

Supplementary information TOC:

Pag. 2:

- Fig. ESI 1. Plot of the Molecular Electrostatic Potential as function of the Molecular bowl cation (Mb····M) distance, computed in the directions normal to the different rings of Sumanene and Corannulene.
- **Table ESI 1.** Interaction energy in the minima of the Mb…M scans of the complexes studied, computed at the levels of calculation: MP2.X, SCS-MP2/CBS and M06-2X/6-31+G*.

Pag. 3:

- **Table ESI 2.** Eint of the minima found in the MP2.X scans, grouped by cation/orientation and ordered by stability.
- **Table ESI 3.** Ionization potential and HOMO energies of the fragments of the cation- π complexes studied, computed at the PBE/aVDZ level of calculation.
- Note on the acronyms used for labelling the complexes.

<u>Pag. 4</u>:

• **Table ESI 4** and **Table ESI 5**. Interaction energies and their contributions (Repulsion, Electrostatic, Polarization and Dispersion) evaluated through SAPT(DFT): PBE/aVDZ calculations, for the 103 cation-π complexes studied.

<u>Pag. 5</u>:

• Fig. ESI 2 and Fig. ESI 3. Bar graphs with the relative contributions (expressed in %) of Electrostatic, Polarization and Dispersion to the stabilization of the 103 complexes studied.

Pag. 6:

• **Table ESI 6.** Interaction energies of selected complexes, computed at the minima of the MP2.X scans using two different DFT methods: M06-2X/6-31+G* and PBE/6-31+G*.

<u>Pag. 7</u>:

• Cartesian coordinates of the polyatomic fragments used in the study, optimized at the M06-2X/6-31+G* level of calculation.

Fig. ESI 1. Molecular Electrostatic Potential in the directions normal to the rings of Sumanene and Corannulene (see Fig. 1 in the body of the paper) computed at the riMP2/aVDZ level of calculation

Table ESI 1. Eint (in kcal/mol) in the minima of the Mb····M scans computed at the levels of calculation: X = MP2.X; S = SCS-MP2/CBS; M = M062X/6-31+G*.

	$\mathbf{Mb} = \mathbf{Corannulene}$			$\mathbf{Mb} = \mathbf{Sumanene}$								
	Μ	level	Cc in	Cc out	Ch in	Ch out	Sc in	Sc out	Sh in	Sh out	Sp in	Sp out
iic cations	Ν	X	-28.46	-28.37	-27.66	-27.98	-28.95	-27.74	-27.51	-29.79	-26.57	-22.50
		S	-28.30	-28.85	-27.55	-28.17	-28.55	-28.12	-27.06	-29.71	-26.24	-22.68
		M	-31.66	-31.06	-30.97	-30.91	-32.73	-30.94	-30.98	-32.98	-29.84	-24.90
atom	K	X	-27.09	-23.64	-25.00	-22.83	-27.19	-23.10	-24.31	-23.98	-24.40	-18.23
souc		S	-26.25	-23.49	-24.22	-22.43	-26.11	-23.08	-23.37	-23.47	-23.46	-17.90
mc		М	-27.37	-24.28	-25.22	-23.35	-27.38	-23.74	-24.52	-24.42	-24.61	-18.43
	A1	X	-26.72	-22.71		-22.26	-27.07	-21.73		-23.38		-17.88
		S	-25.87	-22.75		-21.97	-26.07	-21.81		-22.96		-17.64
		М	-26.44	-22.66		-22.15	-27.31	-21.96		-23.26		-17.72
	A2	X	-28.63	-24.32		-23.75	-28.35	-24.04		-24.69		-17.28
		S	-27.60	-24.08		-23.24	-27.29	-23.88		-24.08		-16.84
		М	-28.57	-24.62		-23.94	-28.62	-24.57		-24.95		-17.13
su	A3	X	-29.30	-23.43		-21.94	-30.86	-23.81		-23.26		-17.96
tetrahedral catio		S	-28.22	-23.15		-21.54	-29.65	-23.60		-22.68		-17.54
		М	-29.58	-23.96		-22.34	-31.27	-24.53		-23.66		-18.28
	T1	X	-16.43	-12.30		-10.98	-16.47	-12.05		-11.11		-9.27
		S	-15.34	-12.03		-10.58	-15.08	-11.78		-10.61		-8.84
		М	-15.89	-11.55		-10.29	-16.22	-11.31		-10.39		-8.65
	T2	X	-17.29	-14.26		-12.15	-15.69	-13.73		-12.22		-9.43
		S	-15.97	-13.97		-11.64	-14.09	-13.52		-11.64		-8.97
		M	-16.47	-13.43		-11.14	-14.93	-12.91		-11.39		-8.45
	Т3	X	-16.99	-15.24		-13.24	-15.71	-14.72		-13.38		-11.89
		S	-15.64	-15.07		-12.83	-14.09	-14.53		-12.78		-11.42
		М	-16.08	-14.13		-12.17	-14.84	-13.62		-12.24		-11.14
	G1	X	-19.37	-15.41		-14.48	-18.59	-14.79		-15.06		-10.03
	T-shap.	S	-18.37	-15.19		-14.11	-17.72	-14.83		-14.60		-9.78
		M	-18.70	-15.12		-14.24	-18.21	-14.60		-14.76		-9.39
	G2	X	-20.04	-19.16		-17.79	-18.77	-18.16		-18.66		-11.12
	T-shap.	S	-19.03	-18.99		-17.38	-17.62	-18.11		-18.10		-10.79
		M	-19.29	-18.12		-16.81	-18.27	-17.31		-17.71		-9.89
ions	G3	X	-19.44	-15.11		-13.04	-15.20	-14.12		-11.96		-11.67
cat	stacked	S	-18.27	-15.08		-12.65	-13.74	-14.13		-11.56		-11.30
flat		М	-19.99	-15.27		-13.03	-15.18	-13.91		-11.69		-11.84
	12	X	-21.35	-17.66	-20.08	-15.80	-20.66	-17.28	-19.62	-16.63	-19.07	-10.41
	T-shap.	S	-21.04	-17.96	-19.87	-15.74	-20.28	-17.67	-19.32	-16.44	-18.76	-10.31
		M	-20.15	-17.06	-19.00	-15.01	-19.84	-16.79	-18.85	-15.99	-18.40	-9.37
	15	X	-20.61	-15.49	-21.83	-13.04	-18.45	-14.85	-20.47	-12.25	-20.90	-11.99
	stacked	S	-21.03	-16.31	-22.09	-13.48	-18.44	-15.73	-20.29	-12.60	-20.64	-12.16
		М	-21.36	-14.98	-22.27	-12.50	-18.82	-14.46	-20.60	-11.73	-21.07	-11.45

J. A. Carrazana-García; E. M. Cabaleiro-Lago; J. Rodriguez-Otero

Electronic Supplementary Information

Table ESI 2. Eint (in kcal/mol) in the minima of the scans performed at the MP2.X level of calculation organized in descending order of stability. Labels for the outer complexes are in **red** color and for the inner complexes in **blue**. As a reference, the values of the molecular electrostatic potential (in kcal/mol) in the minima of Fig. 3 are also included in the first line.

М	EP	<mark>Sh o</mark> -13.9	<mark>Ch o</mark> -12.9	<mark>Cc o</mark> -11.9	<mark>Sp o</mark> -9.8	<mark>Sc o</mark> -9.7	<mark>Ch i</mark> -8.8	<mark>Cc i</mark> -8.8	<mark>Sh</mark> i -7.7	<mark>Sp i</mark> -7.7	<mark>Sc i</mark> -7.6
monoatomic cations	N	<mark>Sh o</mark> -29.8	<mark>Sc i</mark> -29.0	Cc i -28.5	<mark>Сс о</mark> -28.4	Ch o -28.0	<mark>Sc o</mark> -27.7	<mark>Ch i</mark> -27.7	<mark>Sh i</mark> -27.5	Sp i -26.6	Sp o -22.5
	K	<mark>Sc i</mark> -27.2	Cc i -27.1	<mark>Ch i</mark> -25.0	<mark>Sp i</mark> -24.4	<mark>Sh i</mark> -24.3	Sh o -24.0	Ссо -23.6	<mark>Sc o</mark> -23.1	Ch o -22.8	Sp o -18.2
	A1				<mark>Sc i</mark> -27.1	Cc i -26.7	Sh o -23.4	Ссо -22.7	Ch o -22.3	<mark>Sc o</mark> -21.7	Sp o -17.9
s	A2				Cc i -28.6	<mark>Sc i</mark> -28.3	<mark>Sh o</mark> -24.7	Ссо -24.3	Sc o -24.0	Ch o -23.8	Sp o -17.3
cations	A3				Sc i -30.9	Cc i -29.3	Sc o -23.8	<mark>Сс о</mark> -23.4	<mark>Sh o</mark> -23.3	Ch o -21.9	Sp o -18.0
rahedra	T1				Sc i -16.5	Cc i -16.4	Ссо -12.3	<mark>Sc o</mark> -12.0	<mark>Sh o</mark> -11.1	Ch o -11.0	Sp o -9.3
tet	T2				Cc i -17.3	<mark>Sc i</mark> -15.7	<mark>Сс о</mark> -14.3	<mark>Sc o</mark> -13.7	<mark>Sh o</mark> -12.2	<mark>Ch o</mark> -12.2	Sp o -9.4
	Т3				Cc i -17.0	<mark>Sc i</mark> -15.7	Ссо -15.2	<mark>Sc o</mark> -14.7	Sh o -13.4	Ch o -13.2	Sp o -11.9
	G1 T-shap.				Cc i -19.4	Sc i -18.6	<mark>Сс о</mark> -15.4	Sh o -15.1	Sc o -14.8	Ch o -14.5	Sp o -10.0
flat cations	G2 T-shap.				Cc i -20.0	<mark>Сс о</mark> -19.2	<mark>Sc i</mark> -18.8	<mark>Sh o</mark> -18.7	<mark>Sc o</mark> -18.2	<mark>Ch o</mark> -17.8	Sp o -11.1
	G3 stacked				Cc i -19.4	<mark>Sc i</mark> -15.2	<mark>Сс о</mark> -15.1	<mark>Sc o</mark> -14.1	Ch o -13.0	<mark>Sh o</mark> -12.0	Sp o -11.7
	I2 T-shap.	Cc i -21.4	<mark>Sc i</mark> -20.7	Ch i -20.1	<mark>Sh i</mark> -19.6	<mark>Sp i</mark> -19.1	<mark>Сс о</mark> -17.7	<mark>Sc o</mark> -17.3	Sh o -16.6	<mark>Ch o</mark> -15.8	Sp o -10.4
	I5 stacked	Ch i -21.8	Sp i -20.9	Cc i -20.6	<mark>Sh i</mark> -20.5	Sc i -18.4	Cc o -15.5	Sc o -14.8	Ch o -13.0	Sh o -12.2	Sp o -12.0

Table ESI 3. Ionization potential and HOMO energies (in atomic units) of the fragments of the cation- π complexes studied, computed at the PBE/aVDZ level of calculation. These values are used in the SAPT(DFT) calculations.

	loniz. Pot.	НОМО
Corannulene	0.287281	-0.207502
Sumanene	0.262624	-0.190759
Sodium	1.832202	-1.332328
Potassium	1.162489	-0.914581
Ammonium	0.974144	-0.769845
Tetramethylammonium	0.638598	-0.520627
Guanidinium	0.583778	-0.448164
Imidazolium	0.563126	-0.435742

Note on the acronyms used. The positions (ring and side) of the π -system (C = corannulene; S = sumanene) explored in the study are defined in Fig. 1 of the main text. Cations (in general, M) are symbolized by a letter: N = Na⁺, K = K⁺, A = ammonium, T = tetramethylammonium, G = guanidinium and I = imidazolium. The orientations by which the polyatomic cations (A, T, G and I) face the molecular bowl (in general, Mb) are defined in Fig. 2 of the main text, and are represented by a number. The acronym that identifies a particular cation- π complex is formed combining the position of the Mb with the cation information. <u>Examples</u>:

CcNi = complex formed between Corannulene by its central ring with the Na⁺ cation by the inner face of the Mb.

ShA3o = complex formed between Sumanene by its lateral <u>hexagonal ring with the Ammonium cation with three (3)</u> hydrogen groups oriented to the Mb and by its <u>outer side</u>.

J. A. Carrazana-García; E. M. Cabaleiro-Lago; J. Rodriguez-Otero

Table ESI 4. Interaction energies and their contributions (all in kcal/mol) for the **Coranulenne-cation** complexes studied. The SAPT(DFT)/aVDZ calculations were made at the Mb····M distance of the minima found in the MP2.X scans.

compl.	Eint	Rep	Elec	Pol	Disp
CcNi	-25.11	6.59	-8.01	-22.97	-0.72
ChNi	-24.75	7.60	-9.11	-22.57	-0.68
CcNo	-27.27	7.18	-11.80	-22.08	-0.57
ChNo	-26.66	7.76	-11.78	-22.08	-0.58
CcKi	-23.22	11.28	-9.49	-19.48	-5.53
ChKi	-21.82	10.64	-9.68	-18.02	-4.76
СсКо	-22.35	9.52	-12.06	-16.38	-3.43
ChKo	-21.54	9.80	-11.48	-16.41	-3.44
CcAli	-22.31	15.67	-9.01	-20.42	-8.55
CcA10	-21.09	10.82	-10.35	-16.60	-4.96
ChA10	-20.49	11.35	-9.90	-16.80	-5.14
CcA2i	-23.61	16.68	-9.94	-21.12	-9.22
CcA2o	-22.34	13.56	-12.49	-17.67	-5.74
ChA2o	-21.79	14.59	-12.11	-18.43	-5.84
CcA3i	-24.22	15.68	-10.28	-20.36	-9.27
CcA3o	-21.59	11.35	-12.35	-15.32	-5.28
ChA3o	-20.21	11.11	-11.04	-15.11	-5.16
CcT1i	-12.48	14.76	-7.58	-7.07	-12.59
CcT10	-10.94	7.21	-7.73	-4.71	-5.71
ChT10	-9.75	6.77	-6.45	-4.68	-5.38
CcT2i	-13.31	17.28	-9.22	-7.80	-13.57
CcT2o	-12.81	8.25	-8.89	-5.20	-6.96
ChT2o	-10.87	8.02	-7.29	-5.19	-6.41
CcT3i	-13.06	18.28	-9.27	-7.98	-14.09
CcT30	-13.84	10.28	-9.60	-6.58	-7.94
ChT3o	-11.93	8.64	-7.45	-6.13	-7.00
CcG1i	-14.72	14.59	-7.74	-10.80	-10.78
CcG10	-13.45	9.59	-9.13	-8.10	-5.81
ChG10	-12.76	9.30	-8.26	-8.25	-5.54
CcG2i	-14.79	20.93	-9.28	-13.13	-13.30
CcG2o	-17.12	12.92	-10.61	-11.98	-7.45
ChG2o	-15.85	11.56	-9.55	-11.25	-6.61
CcG3i	-15.40	19.51	-11.84	-8.70	-14.37
CcG3o	-13.79	8.39	-10.01	-4.88	-7.29
ChG3o	-11.78	7.95	-7.89	-5.05	-6.78
CcI2i	-16.85	17.81	-9.00	-13.29	-12.36
ChI2i	-16.12	14.53	-7.70	-11.86	-11.08
CcI2o	-16.02	10.39	-10.02	-9.80	-6.59
ChI2o	-14.25	9.51	-8.66	-9.27	-5.83
CcI5i	-16.36	22.36	-12.28	-9.50	-16.93
ChI5i	-17.52	20.66	-11.66	-10.75	-15.76
CcI50	-14.34	8.61	-10.00	-5.22	-7.73
ChI50	-12.10	7.14	-7.71	-4.93	-6.60

Table ESI 5. Interaction energies and their contributions (all in kcal/mol) for the **Sumanene-cation** complexes studied. The SAPT(DFT)/aVDZ calculations were made at the Mb…M distance of the minima found in the MP2.X scans.

a a man 1	Fint	Don	Floo	Dol	Dian
Compi.	Eint	кер	Elec	P01	Disp
ScNi	-25.23	8.27	-/.41	-25.22	-0.87
ShNi	-24.25	8.89	-8.91	-23.48	-0.75
SpN1	-23.57	7.83	-7.03	-23.61	-0.76
ScNo	-26.81	7.68	-10.30	-23.50	-0.69
ShNo	-28.26	9.10	-14.35	-22.37	-0.64
SpNo	-21.41	7.87	-5.87	-22.80	-0.60
ScKi	-23.01	13.92	-9.06	-21.48	-6.39
ShKi	-21.09	11.35	-8.73	-18.65	-5.06
SpKi	-21.03	11.50	-8.09	-19.16	-5.29
ScKo	-22.14	9.65	-10.97	-17.12	-3.71
ShKo	-22.74	10.27	-13.08	-16.40	-3.53
SpKo	-17.00	8.95	-6.43	-16.22	-3.30
ScA1i	-22.49	17.00	-8 69	-21 38	-941
ScA10	-20.36	9.92	-9.09	-16.15	-5.04
ShA10	-21.60	11 75	-11 33	-16 77	-5.25
SnA10	-16.36	10.35	-5.62	-16.23	-4.86
ScA2i	22.22	18 11	0.01	22.40	10.02
ScA20	23.33	13.11	11 22	18 22	5.02
ShA20	22.31	1/ 07	12 25	18 20	-5.95
ShA2c	-22.74	14.02 11.17	-13.33	-10.20	-3.93
SpA20	-13.00	11.1/	-3.19	-10.02	-4.9/
ScA31	-23.22	19.49	-11.01	-22.90	-10./5
SCA30	-22.08	12.19	-11.82	-16.74	-5./1
ShA30	-21.48	12.34	-12.8/	-15.56	-5.40
SpA30	-16.35	10.41	-6.90	-14.86	-5.00
ScT1	-12.05	19.03	-7.90	-8.17	-15.00
ScT10	-10.80	7.37	-7.29	-4.97	-5.90
ShT10	-9.87	7.40	-6.89	-4.87	-5.51
SpT10	-8.06	6.40	-4.71	-4.54	-5.21
ScT2i	-11.78	20.41	-8.37	-8.76	-15.06
ScT20	-12.45	8.87	-8.54	-5.57	-7.20
ShT2o	-10.98	8.30	-7.50	-5.30	-6.47
SpT2o	-8.22	6.27	-4.62	-4.59	-5.27
ScT3i	-11.86	21.68	-9.67	-8.68	-15.18
ScT30	-13.47	10.47	-9.30	-6.77	-7.87
ShT3o	-12.07	10.25	-8.35	-6.59	-7.37
SpT3o	-10.45	10.14	-6.44	-6.46	-7.69
ScG1i	-14.21	16.84	-6.99	-11.87	-12.19
ScG10	-13.39	8.83	-8.22	-8.18	-5.82
ShG10	-13 32	9.62	-8 99	-8 31	-5 64
SpG10	-8 77	6.54	-3.51	-7.24	-4 56
ScG2i	-14 30	18 75	-7.52	-12.52	-13.01
ScG20	-16.37	12.60	-9.71	-11.80	-7.45
ShG20	-16.59	14 24	-11 17	-12.26	_7 39
SnG20	_0.7/	7 72	_3 /0	_12.20	_4 80
SeC2i	11 74	20.72	0.14	-0.00	1/ 20
SeC22	-11./4 12.14	20.72	-9.14 8.07	-0.93	-14.39
SCC30 ShC2c	-13.14	7.00	-0.7/ 7 00	-4.91 1 01	-0.00
SIIC30	-10.99	7.18	-7.08	-4.84	-0.20
SpG30	-10.41	/.91	-0.20	-5.28	-0./8
Sc121	-16.09	19.49	-8.09	-13.90	-13.60
Sh121	-15.53	16.47	-6.85	-12.49	-12.66
Spl21	-14.82	15.98	-5.71	-12.33	-12.76
ScI20	-15.77	10.84	-9.44	-10.30	-6.87
ShI2o	-15.00	10.63	-9.70	-9.70	-6.23
SpI2o	-9.28	6.09	-3.58	-7.51	-4.28
ScI5i	-14.08	25.64	-10.78	-10.81	-18.13
ShI5i	-16.02	22.66	-9.74	-12.32	-16.62
SpI5i	-16.11	25.93	-11.40	-12.86	-17.77
ScI50	-13.85	8.71	-9.39	-5.38	-7.80
ShI50	-11.46	6.99	-7.05	-4.95	-6.45
SpI50	-10.91	7.68	-6.93	-5.17	-6.50

in	Elec	Pol	Disp Out
		CcN	
		ChN	
		СсК	
		ChK	
		CcA1	
		CcA2	
		CcA3	
		ChA1	
		ChA2	
		ChA3	
		CcT1	
		CcT2	
		CcT3	
		ChT1	
		ChT2	
		ChT3	
		CcG1	
		CcG2	
		CoC2	
		ChGT	
		ChG2	
		ChG3	
		Ccl2	
		<u>Ccl5</u>	
		Chl2	
0/ 2	5 50 75 10	Chi5	9/ 25 50 75 100

Fig. ESI 2. Relative contributions (expressed in %) of Electrostatic, Polarization and Dispersion to the stabilization of the **Corannulene-cation** complexes studied. Labels of the complexes in stacked configuration appear underlined.

The values of relative contributions to the stability of one complex are calculated using the data of Tables ESI 4 and ESI 5:

$$\% Elec = \frac{Elec \cdot 100\%}{Elec + Pol + Disp}$$

and similar with %Pol and %Disp.

in	Elec	Pol	Disp Out
		ScN	
		ShN	
		SpN	
		ScK	
		ShK	
		SpK	
		ScA1	
		ScA2	
		ScA3	
		ShA1	
		ShA2	
		ShA3	
		SpA1	
		SpA2	
		SpA3	
		ScT1	
		ScT2	
		ScT3	
		ShT1	
		ShT2	
		ShT3	
		SpT1	
		SpT2	
		SpT3	
		ScG1	
		ScG2	
		ScG3	
		ShG1	
		ShG2	
		ShG3	
		SpG1	
		SpG2	
		SpG3	
		Scl2	
		Scl5	
		Shl2	
		Shl5	
		Spl2	
		Spl5	
0% 25	50 75 10	0 (0% 25 50 75 10

Fig. ESI 3. The same as Fig. ESI 2, here for the Sumanene-cation complexes.

Cation/orientation	Level [*]	in	out
N	X	-28.95	-27.74
	М	-32.51	-30.70
	Р	-28.50	-29.90
К	X	-27.19	-23.10
	М	-27.40	-23.73
	Р	-20.48	-21.49
A3	X	-30.86	-23.81
	М	-31.20	-24.47
	Р	-22.89	-21.81
Т3	Х	-15.71	-14.72
	М	-14.79	-13.56
	Р	-5.23	-10.76
G1	Х	-18.59	-14.79
	М	-18.14	-14.62
	Р	-9.73	-12.23
G3	X	-15.20	-14.12
	М	-15.10	-13.80
	Р	-5.15	-9.74
12	X	-20.66	-17.28
	М	-19.84	-16.79
	Р	-10.96	-14.29
15	X	-18.45	-14.85
	М	-18.75	-14.44
	Р	-5.94	-9.81

Table ESI 6. Interaction energies of selected complexes, computed in the minima of the MP2.X scans.

 Molecular Bowl: sumanene, central ring.

*Level of calculation: **X** = MP2.X; **M** = M062X/6-31+G*; **P** = PBE/6-31+G*

Cartesian coordinates of the polyatomic fragments used in the study optimization + frequencies computed at the level of calculation: $M06-2X/6-31+G^*$

$C_{20}H_{10} = C$	orannulene,	C5v	
С	-1.14681132	-0.37262104	0.63005922
С	0.0000030	-1.20582856	0.63005925
С	1.14681102	-0.37262180	0.63005925
С	0.70876786	0.97553614	0.63005922
С	-0.70876852	0.97553617	0.63005921
С	-1.45670056	2.00497631	0.09801119
С	-2.81097051	1.64060583	-0.25948582
С	-3.23844597	0.32496873	-0.25948581
С	-2.35699113	-0.76583262	0.09801122
С	-2.42894668	-2.16641682	-0.25948576
С	-1.30979850	-2.97952484	-0.25948574
С	0.0000026	-2.47828642	0.09801127
С	1.30979922	-2.97952496	-0.25948571
С	2.42894641	-2.16641693	-0.25948571
С	2.35699037	-0.76583287	0.09801127
С	3.23844651	0.32496858	-0.25948574
С	2.81097064	1.64060595	-0.25948576
С	1.45670042	2.00497648	0.09801122
С	0.69167121	3.18036601	-0.25948581
С	-0.69167121	3.18036690	-0.25948582
Н	-1.21035420	4.06266083	-0.62729684
н	-3.48980004	2.40654649	-0.62729684
Н	-4.23784051	0.10431530	-0.62729681
н	-3.36716918	-2.57533327	-0.62729677
Н	-1.40877467	-3.99819039	-0.62729673
Н	1.40877526	-3.99819002	-0.62729670
н	3.36716917	-2.57533356	-0.62729670
Н	4.23784034	0.10431556	-0.62729673
Н	3.48979998	2.40654644	-0.62729677
Н	1.21035499	4.06266103	-0.62729681
NH₄ ⁺ = An	nmonium cat	tion. Td	
N	0.00000000	0.00000000	0.00000000
н	0.00000000	0.00000000	1.02829432
н	0.96948518	0.00000000	-0.34276477
н	-0 48474260	0 83959879	-0 34276477
н	-0.48474259	-0.83959880	-0.34276477
	0110171200	0.0000000000	0.0.1270177
o	-		
$C_4H_{12}N =$	Tetramethy	lammonium	cation, 1d
N	0.00000000	0.00000000	0.00000000
C	1.49852706	0.00000000	0.00000000
С	-0.49950902	-1.22354222	0.70641243
С	-0.49950902	-0.00000000	-1.41282486
С	-0.49950902	1.22354222	0.70641243
Н	1.95971433	0.00000000	0.98901930
Н	1.95971433	-0.85651584	-0.49450965
Н	1.95971433	0.85651584	-0.49450965
Н	-0.18700994	-1.31459477	1.74800095
Н	-1.58569445	-1.31459477	0.75898165
Н	-0.18700994	-2.17111061	0.26447200
Н	-1.58569445	-0.00000000	-1.51796329
Н	-0.18700994	0.85651584	-2.01247294
H	-0.18700994	-0.85651584	-2.01247294
Н	-0.18700994	2.17111061	0.26447199
Н	-1.58569445	1.31459477	0.75898165
Н	-0.18700994	1.31459477	1./4800095

$C_{21}H_{12} =$	Sumanene, C3	3v	
С	0.69117819	-1.22833915	-0.69998887
С	-0.69117746	-1.22833925	-0.69998889
С	-1.40936173	0.01559176	-0.69998889
С	-0.71818436	1.21274712	-0.69998887
С	0.71818436	1.21274785	-0.69998884
С	1.40936262	0.01559260	-0.69998884
С	2.64539924	-0.13212532	-0.06831382
С	2.85085915	-1.64594370	0.18489616
С	1.43712444	-2.22491944	-0.06831387
C	0.71411463	-3.30021949	0.45185711
C.	-0.71411310	-3.30022080	0.45185708
C	-1 43712375	-2 22492018	-0.06831392
C	-2 85085917	-1 64594515	0.18489606
C C	-2 64530021	-0 13212676	-0.06831302
C C	2 21512206	1 02166990	0.00831392
c	-3.21313200	2.05100805	0.45185708
C	-2.50101760	2.20855004	0.45185711
C	-1.20827558	2.35704545	-0.06831387
C	-0.00000095	3.29188830	0.18489616
C	1.20827469	2.35/04614	-0.06831382
C	2.50101682	2.26855140	0.45185720
С	3.21513109	1.03166983	0.45185720
Н	4.16042959	0.99672100	0.98847121
Н	3.18882078	-1.84106632	1.20671417
Н	3.59682417	-2.07662667	-0.49568583
Н	1.21703102	-4.10139783	0.98847111
Н	-1.21702966	-4.10139761	0.98847107
Н	-3.18882036	-1.84106724	1.20671406
Н	-3.59682303	-2.07662781	-0.49568595
Н	-4.16042979	0.99671836	0.98847107
Н	-2.94340058	3.10467739	0.98847111
н	-0.00000144	3.68213296	1.20671417
н	-0.00000121	4.15325444	-0.49568583
н	2.94339912	3.10467852	0.98847121
$CH_6N_3' =$	= Guanidinium	cation, C3	
С	0.00000000	0.00000000	0.00000000
Ν	0.00000000	0.00000000	1.33259541
Ν	1.15406206	0.00000000	-0.66629598
Ν	-1.15405782	-0.00312600	-0.66629598
Н	-1.19021509	-0.20083352	-1.65782873
Н	-2.03221182	0.19342044	-0.20395746
н	-0.84034614	-0.19760886	1.86013720
н	0.83920536	0.19892436	1.86146692
н	2.03136541	-0.19533190	-0.20184417
Н	1.19220876	0.19665048	-1.65796901
с ц м +	- Imidazalium	cation Cav	
			2 76004200
	0.00598102	0.70338207	2.70894399
N C	-1.0/4/0959	0.0918/609	3.15925224
C	-0./0160801	-1.05633494	3.82664158
C	0.65842025	-1.0/167526	3.83555810
N	1.06604223	0.06772966	3.17328730
Н	0.02006885	1.69692224	2.22633090
Н	-2.02876475	0.38938239	2.98632881
н	-1.42100895	-1.75100181	4.23041160

H H 1.35661468 -1.78233179 4.24862208

2.02874995 0.34361599 3.01293043