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Additional models considered

In addition to the common Gō model and the two Gō+HP models described in the maintext, we 
considered two other Cα coarse-grained models with varied interaction schemes. The first variation, 
the “Gō+MJ” model, is purely native-centric. It uses the Miyazawa-Jernigan residue-residue 
statistical potential1 for native contact strengths. In this scheme, instead of using a uniform, 
homogeneous native contact strength as in the common Gō-model approach, pairwise native-centric 
energies depend on the types of amino acid residues that are in contact. We have recently applied 
such an approach in a theoretical analysis of -values2. The heterogeneous native contact energies 
used in the present Gō+MJ model are the same as those in ref.2. The second variation is referred to 
as the “Gō+mb” model. This interaction scheme also uses Miyazawa-Jernigan statistical potential 
for pairwise native contact energies as in the “Gō+MJ” model; but in addition, a many-body local-
nonlocal coupling effect is added, such that the total potential energy of the model is given by 
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where Ebonded corresponds to the terms for Cα-Cα virtual bond lengths, bond angles, and torsion 
angles as given by the first three summations on the right-hand side of Eq.(1) of ref. 3, with energy 

parameters Kr = 100, Kθ = 20, , and . The many-body energy  term with 𝐾(1)
∅ = 0.5 𝐾(3)

∅ = 0.25 𝐸𝑚𝑏

local-nonlocal coupling now takes the form

(S2)𝐸𝑚𝑏 =   {1 ‒ 𝛼 +  𝛼 𝑒𝑥𝑝[ ‒ (𝐴 + 𝐵)]}𝐸𝑑𝑏                                                                

in which 

                               (S3)𝐴 = [(∆1)2 + (∆2)2]/(∆𝑐)2

                                  (S4)𝐵 =  (𝜓 ‒ 𝜓0)2/𝐵0

Here,  is an attenuation factor that weakens the native contact energy if the local conformation of 𝛼

one or both sets of five contiguous residues is nonnative; we set  in the present study. For 𝛼 = 0.2

any given conformation, the factors  and  are the minimum root-mean-square-deviations, in Å, ∆1 ∆2

of the spatial coordinates of two 5-residue segments centered around each of the contacting residues 
(i.e., residues i − 2, i − 1, i, i + 1, i + 2 and residues j − 2, j − 1, j, j + 1, j + 2) from their respective 
best-superposed local conformations in the native PDB structure.  is the cross angle (in radian) of 𝜓

the two segments, which is defined as the cross angle of the two lines connected by the terminal 
residue positions of each segment, and  is the corresponding cross angle of the two segments in 𝜓0

the PDB structure. The parameters  and  were introduced to tune the effect of local ∆𝑐 𝐵0

conformational variation, here we set  Å2 and  (radian)2.  is the desolvation (∆𝑐)2 = 0.4 𝐵0 = 0.4 𝐸𝑑𝑏

potential defined in reference3, but now with the  in that reference modified to the Miyazawa-𝜀

Jernigan potential . In the nonnative repulsive term, , and , where  and 𝜀𝑀𝐽 𝑓𝑟𝑒𝑝 = 0.8 𝑟𝑟𝑒𝑝 = 𝜎𝑖 + 𝜎𝑗 𝜎𝑖

 are the experimental radii of residue i and j, respectively4. The last summation of  over 𝜎𝑗 𝐸𝑛𝑜𝑛𝑛𝑎𝑡𝑖𝑣𝑒
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nonnative residue pairs accounts for sequence-dependent nonnative interactions, and the term for 
residue pair i,j is given by

        (S5)𝐸𝑛𝑜𝑛𝑛𝑎𝑡𝑖𝑣𝑒 = 𝐸𝑛𝑜𝑛𝑛𝑎𝑡𝑖𝑣𝑒(𝑖,𝑗) =‒ 𝐾𝑛𝑜𝑛𝑛𝑎𝑡𝑖𝑣𝑒 (𝜀𝑀𝐽)𝜇𝜈𝑒𝑥𝑝[ ‒ (𝑟𝑖𝑗 ‒ 𝜎𝑖 ‒ 𝜎𝑗)/2]

where μ, ν are the amino acid residue types of i, j, respectively. Here  ≡ eμν/(constant), where (𝜀𝑀𝐽)𝜇𝜈

eμν corresponds to the 210 “eij” quantities provided in the upper-triangular part of Table 3 in ref.1 
(in which residue types were labeled by i,j); the rescaling factor, (constant), is negative, and is taken 
to be 1.465/210 times the average of all 210 eijs such that the most favorable (most strongly negative) 

 is about ‒1.5 (i.e., ). For the present study, we chose an (𝜀𝑀𝐽)𝜇𝜈
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overall nonnative interaction strength .𝐾𝑛𝑜𝑛𝑛𝑎𝑡𝑖𝑣𝑒 = 0.3



Supporting Figures

Figure S1. A control computation to gain further insight into the dependence of transition path time 
and mean folding first passage time on folding free energy barrier height. The plotted quantity here 
are the essentially the same as those represented by the red circles in Figure 6 (A), except the one-
dimensional diffusion dynamics is now computed using an ad hoc free energy profile obtained by 
uniformly scaling the free energy profile generated by explicit-chain dynamics in all-atom MD 
simulations by a factor of two such that the overall folding barrier height in the present ad hoc 
profile is twice that of the original. The Pearson correlation coefficient for the present data points is 
r = 0.74 and the slope of fitted dash line is 1.02.



Figure S2. Contact patterns of transition path ensembles. The predicted native contact probability 
maps of transition path (TP) computed by the common Gō model (top-left of each panel) and by 
all-atom MD simulations (bottom-right of each panel) are shown for the four studied proteins. The 
plotted native contact probabilities are computed from all conformations visited, irrespective of their 
Q values, along all simulated transition paths. 



Figure S3. Computed -values of the four studied proteins predicted by all-atom MD simulations 
(black triangles), the Gō+MJ (red squares), and the Gō+mb (blue circles) models. Lines connecting 
plotted symbols are merely guides for the eye.



Figure S4. Correlation between mean folding first passage time MFP predicted by all-atom MD 
simulations and MFP(MC), which is the corresponding quantity modeled as one-dimensional  
diffusion dynamics using the free energy profile generated by all-atom MD simulations, wherein 
each Kawasaki Monte Carlo step can either add or subtract one native contact or leaving the number 

of native contacts unchanged, i.e. the step size in Q is given by  δQ = 1/ , where  is the number �̃�𝑛 �̃�𝑛

of native contacts in the PDB structure of the given protein (black squares, left vertical scale; 
Pearson coefficient r = 0.311). If the data point for  repressor (black square marked by blue circle) 
is excluded, the correlation coefficient improves significantly to r = 0.867. Alternate Kawasaki 
dynamics results MFP (MC2) using a constant δQ = 1/80 irrespective of the protein are shown by 
the red circles (right vertical scale); with MFP (MD)—MFP (MC2) correlation coefficient r ≈ 0. 
Details of our Kawasaki formulation is provided in ref. 5 and the Supporting Information of this 
reference.



Figure S5. Correlation between transition path time TP predicted by all-atom MD simulations and 
TP (MC), which is the corresponding quantity computed by one-dimensional Kawasaki diffusion 

dynamics (δQ = 1/ ) using the free energy profile generated by all-atom MD simulations (black �̃�𝑛

squares, the left vertical scale; r = 0.765). The transition path time TP (MC2) computed using the 
alternate protein-independent δQ = 1/80 Kawasaki dynamics is shown by the red circles (right 
vertical scale), with TP (MD)—TP (MC2) correlation coefficient r ≈ 0.
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