Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supplementary Information

Evaluation of Electronic Polarization energy in Oligoacene Molecular Crystals Using solvated supermolecular approach

Tao Xu^a, Wenliang Wang^a, Shiwei Yin^{a*} and Yun Wang^b

 ^aKey Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an city, China, 710062
^bCentre for Clean Environment and Energy, Griffith School of Environment, Gold Coast Campus, Griffith University, QLD 4222, Australia

Correspondent email address: yin_sw@snnu.edu.cn (S.W. Yin)

		B	BLW			CDFT			
d	charge	E ₀	IP/EA	P±	E ₀	IP/EA	P_{\pm}		
	-	(a.u.)	(eV)	(eV)	(a.u.)	(eV)	(eV)		
			t	rimer					
3.0	-1	-1157.079271	-0.613	-0.006	-1157.846438	-0.438	-0.091		
	+1	-1156.846396	6.950	-0.862	-1157.607969	6.927	-0.978		
	0	-1157.101786			-1157.862520				
3.2	-1	-1157.127199	-0.693	0.074	-1157.889209	-0.576	0.047		
	+1	-1156.892493	7.080	-0.732	-1157.648204	7.134	-0.771		
	0	-1157.152665			-1157.910360				
3.4	-1	-1157.152634	-0.744	0.125	-1157.911779	-0.653	0.124		
	+1	-1156.916379	7.173	-0.639	-1157.668901	7.262	-0.643		
	0	-1157.179966			-1157.935761				
3.6	-1	-1157.165916	-0.774	0.155	-1157.923895	-0.690	0.161		
	+1	-1156.928190	7.243	-0.569	-1157.679357	7.344	-0.561		
	0	-1157.194364			-1157.949246				
3.8	-1	-1157.173077	-0.790	0.171	-1157.930545	-0.705	0.176		
	+1	-1156.933873	7.299	-0.512	-1157.684379	7.403	-0.502		
	0	-1157.202114			-1157.956448				
4.0	-1	-1157.177190	-0.796	0.177	-1157.934648	-0.707	0.178		
	+1	-1156.936496	7.346	-0.466	-1157.686839	7.450	-0.455		
	0	-1157.206446			-1157.960621				
4.2	-1	-1157.179859	-0.797	0.178	-1157.937420	-0.702	0.174		
	+1	-1156.937698	7.387	-0.425	-1157.688010	7.489	-0.416		
	0	-1157.209150			-1157.963227				
4.4	-1	-1157.181838	-0.793	0.174	-1157.939117	-0.697	0.168		
	+1	-1156.938248	7.422	-0.390	-1157.688247	7.523	-0.382		
	0	-1157.210986			-1157.964728				
4.6	-1	-1157.183444	-0.788	0.169	-1157.940125	-0.691	0.163		
	+1	-1156.938496	7.454	-0.358	-1157.687946	7.554	-0.352		
	0	-1157.212420			-1157.965533				
4.8	-1	-1157.184745	-0.782	0.163	-1157.940875	-0.685	0.156		
	+1	-1156.938525	7.482	-0.330	-1157.687517	7.579	-0.326		
	0	-1157.213468			-1157.966055				
5.0	-1	-1157.185896	-0.775	0.156	-1157.941369	-0.680	0.152		
	+1	-1156.938486	7.508	-0.304	-1157.686938	7.604	-0.301		
	0	-1157.214384			-1157.966366				
5.2	-1	-1157.186821	-0.768	0.149	-1157.941874	-0.675	0.146		
	+1	-1156.938314	7.530	-0.281	-1157.686445	7.625	-0.280		

Table S1. Electronic Energies (E_0), Ionization Potential (IP), Electron Affinity (EA), and Polarization Energies (P_{\pm}) of naphthalene trimer models with a face-to-face distance range from 3.0 Å to 6.0 Å from BLW method and CDFT method.^a

	0	-1157.215042			-1157.966672		
5.4	-1	-1157.187613	-0.761	0.142	-1157.942319	-0.669	0.140
	+1	-1156.938089	7.551	-0.261	-1157.685947	7.645	-0.260
	0	-1157.215585			-1157.966904		
5.6	-1	-1157.188311	-0.754	0.135	-1157.942857	-0.663	0.134
	+1	-1156.937844	7.570	-0.242	-1157.685589	7.664	-0.241
	0	-1157.216035			-1157.967228		
5.8	-1	-1157.188854	-0.748	0.129	-1157.943302	-0.657	0.128
	+1	-1156.937523	7.587	-0.225	-1157.685196	7.681	-0.225
	0	-1157.216340			-1157.967451		
6.0	-1	-1157.189354	-0.742	0.123	-1157.943722	-0.651	0.122
	+1	-1156.937218	7.603	-0.209	-1157.684831	7.696	-0.209
	0	-1157.216613			-1157.967652		
			S	ingle			
	-1	-385.716656	-0.619		-385.970312	-0.529	
	+1	-385.452333	7.812		-385.699234	7.905	
	0	-385.739404			-385.989741		

^aThe optimized geometry of neutral naphthalene at B3LYP/6-311G(d,p) level.

		BLW			CDFT		
3	charge	E ₀	IP/EA	P_{\pm}	E ₀	IP/EA	P_{\pm}
		(a.u.)	(eV)	(eV)	(a.u.)	(eV)	(eV)
1.50	-1	-1157.199265	-0.268	-0.351	-1157.972657	0.077	-0.606
	+1	-1156.959083	6.804	-1.008	-1157.717516	6.866	-1.039
	0	-1157.209129			-1157.969839		
2.00	-1	-1157.210451	-0.002	-0.617	-1157.993278	0.494	-1.023
	+1	-1156.970588	6.529	-1.283	-1157.733248	6.582	-1.323
	0	-1157.210540			-1157.975116		
2.75	-1	-1157.219681	0.216	-0.835	-1158.011174	0.853	-1.382
	+1	-1156.980119	6.303	-1.509	-1157.746358	6.354	-1.551
	0	-1157.211732			-1157.979844		
4.00	-1	-1157.227427	0.399	-1.018	-1158.026943	1.165	-1.694
	+1	-1156.988150	6.112	-1.700	-1157.757472	6.167	-1.738
	0	-1157.212753			-1157.984114		
8.00	-1	-1157.236008	0.601	-1.220	-1158.045377	1.528	-2.057
	+1	-1156.997083	5.900	-1.912	-1157.769924	5.967	-1.938
	0	-1157.213906			-1157.989217		

Table S2. Electronic Energies (E_0), Ionization Potential (IP), Electron Affinity (EA), and Polarization Energies (P_{\pm}) of the face-to-face orientation of naphthalene trimer model with dielectric constant (ϵ) from BLW method and CDFT method.^a

^aThe optimized geometry of neutral naphthalene at B3LYP/6-311G(d,p) level.

			1	5	
Method	Model	IPg	EAg	IPc	EAc
B3LYP	3M-paral	7.812	-0.619	6.303	0.216
	4M-paral	7.061	-0.204	5.885	0.569
	5M-paral	6.691	-0.009	5.708	0.704
	6M-paral	6.458	0.123	5.606	0.780
CAM-B3LYP	3M-paral	8.026	-0.567	6.512	0.267
	4M-paral	7.497	-0.372	6.317	0.401
	5M-paral	7.238	-0.317	6.233	0.441
	6M-paral	7.088	-0.290	6.198	0.445

Table S3. Calculated Ionization Potential (IP), Electron Affinity (EA) of gas and solid phase for face-to-face parallel multimers. xM-paral. models mean an excess charge is located on x-2 center molecules combined with two explicitly neutral molecules.^a

^aThe optimized geometry of neutral naphthalene at B3LYP/6-311G(d,p) level.

		gas-phase			solid-phase		
	charge	E ₀	IP/EA	\mathbf{P}_{\pm}	E ₀	IP/EA	P_{\pm}
		(a.u.)	(eV)	(eV)	(a.u.)	(eV)	(eV)
			Nap	hthalene			
1M	-1	-385.561548	-0.748		-385.612689	0.571	-1.319
	+1	-385.302077	7.808		-385.348786	6.610	-1.198
	0	-385.589021			-385.591699		
5M	-1	-1927.907577	-0.653	-0.095	-1927.951980	0.319	-1.067
	+1	-1927.662840	7.312	-0.496	-1927.702788	6.462	-1.346
	0	-1927.931557			-1927.940249		
9M	-1	-3470.244027	-0.514	-0.234	-3470.283594	0.245	-0.993
	+1	-3469.997504	7.223	-0.585	-3470.037610	6.449	-1.359
	0	-3470.262927			-3470.274603		
			Ant	hracene			
1M	-1	-539.243889	0.120				
	+1	-538.981021	7.033				
	0	-539.239488					
5M	-1	-2696.184603	0.226	-0.106	-2696.231613	1.173	-1.053
	+1	-2695.935034	6.565	-0.468	-2695.976121	5.780	-1.253
	0	-2696.176306			-2696.188524		
			Te	tracene			
1M	-1	-692.731232	0.687				
	+1	-692.467341	6.494				
	0	-692.705978					
5M	-1	-3463.526836	0.740	-0.053	-3463.575543	1.659	-0.972
	+1	-3463.278989	6.004	-0.490	-3463.321590	5.251	-1.243
	0	-3463.499639			-3463.514567		
			Per	ntacene			
1M	-1	-846.464710	1.210				
	+1	-846.196924	6.076				
	0	-846.420229					
5M	-1	-4231.840714	1.286	-0.076	-4231.893853	2.205	-0.995
	+1	-4231.586881	5.621	-0.455	-4231.631172	4.942	-1.134
	0	-4231.793462			-4231.812804		

Table S4. Electronic Energies (E_0), Ionization Potential (IP), Electron Affinity (EA), and Polarization Energies (P_{\pm}) of oligoacenes various model from BLW method.^a

^aMolecular crystal geometries were obtained from oligoacene crystals.

		gas-j	gas-phase			solid-phase		
	charge	E ₀	IP/EA	P_{\pm}	E ₀	IP/EA	P_{\pm}	
		(a.u.)	(eV)	(eV)	(a.u.)	(eV)	(eV)	
1M	0	-385.840075			-385.844696			
	-1	-385.815952	-0.656		-385.874592	0.814	-1.470	
	1	-385.549676	7.902		-385.606634	6.478	-1.424	
5M	0	-1929.198399			-1929.217745			
	-1	-1929.177189	-0.577	-0.079	-1929.245597	0.758	-1.414	
	1	-1928.924565	7.451	-0.451	-1928.984577	6.345	-1.557	
9M	0	-3472.552789			-3472.584617			
	-1	-3472.536472	-0.444	-0.212	-3472.613163	0.777	-1.433	
	1	-3472.281969	7.369	-0.533	-3472.352350	6.320	-1.582	

Table S5. Electronic Energies (E_0), Ionization Potential (IP), Electron Affinity (EA), and Polarization Energies (P_{\pm}) of naphthalene various model from CDFT method.^a

^aMolecular crystal geometries were obtained from crystal structures of naphthalene.

	IPg	EAg	IPc	EAc
		CAM-B3LYP		
Naphthalene	8.035	-0.685	6.695	0.385
Anthracene	7.271	0.169	6.021	1.227
Tetracene	6.735	0.742	5.493	1.722
Pentacene	6.301	1.269	5.169	2.279
		BLYP		
Naphthalene	7.645	-0.777	6.298	0.289
Anthracene	6.859	0.093	5.605	1.141
Tetracene	6.318	0.648	5.077	1.614
Pentacene	5.915	1.162	-	-
		B3LYP		
Naphthalene	7.808	-0.748	6.462	0.319
Anthracene	7.033	0.120	5.780	1.173
Tetracene	6.494	0.687	5.251	1.659
Pentacene	6.076	1.210	4.942	2.205
		exp.		
Naphthalene	8.12 ^b	0.15°	6.40 ^b	1.10 ^d
Anthracene	7.36 ^b	0.60 ^e	5.70 ^b	1.70^{f}
Tetracene	6.90 ^b	0.88 ^g	5.25 ^h	1.80 ^d
Pentacene	6.58 ^b	1.35°	4.85 ^b	2.40^{f}

Table S6. Ionization Potential (IP), Electron Affinity (EA) of gas and solid phase of oligoacenes obtained from the solvated 5M model and compare with experimental values.^a

^aMolecular crystal geometries were obtained from oligoacene crystals.

^bRef 1. ^cRef 2. ^dRef 3. ^eRef 4. ^fRef 5. ^gRef 6. ^hRef 7.

References

- 1. N. Sato, K. Seki and H. Inokuchi, J. Chem. Soc., Faraday Trans. 2, 1981, 77, 1621-1633.
- 2. R. S. Ruoff, K. M. Kadish, P. Boulas and E. C. M. Chen, J. Phys. Chem., 1995, 99, 8843-8850.
- 3. K. H. Frank, P. Yannoulis, R. Dudde and E. E. Koch, J. Chem. Phys., 1988, 89, 7569-7576.
- 4. S. Chowdhury, T. Heinis and P. Kebarle, J. Am. Chem. Soc., 1986, 108, 4662-4663.
- 5. P. E. Schwenn, P. L. Burn and B. J. Powell, *Org. Electron.*, 2011, **12**, 394-403.
- 6. E. C. M. Chen and W. E. Wentworth, *Mol. Cryst. Liq. Cryst. Incorporating Nonlinear Opt.*, 1989, **171**, 271-285.
- 7. M. Pope, J. Burgos and J. Giachino, J. Chem. Phys., 1965, 43, 3367-3371.