Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supporting Information

A Vacuum Ultraviolet Photoionization Study on High-Temperature Decomposition of JP-10 (*exo*-Tetrahydrodicyclopentadiene)

Long Zhao, Tao Yang, Ralf I. Kaiser* Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, 96822

Tyler P. Troy, Bo Xu, Musahid Ahmed* Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Juan Alarcon, Daniel Belisario-Lara, Alexander M. Mebel*

Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199

Yan Zhang, Chuangchuang Cao,

National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Peoples Republic of China 230029

Jiabiao Zou

Key Laboratory for Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, Shanghai 200240, PR China

Molecule	Formula	Mass	Structure	Ref.
Hydrogen	H ₂	2	H H	1-4
Methyl	CH ₃	15	CH ₃ •	3
Methane	CH ₄	16	CH ₄	1-6
Acetylene	C ₂ H ₂	26		1, 3, 7, 8
Ethylene	C_2H_4	28		1-8
Ethyl	C ₂ H ₅	29	•	3
Ethane	C ₂ H ₆	30		1, 2, 4-6
Propargyl	C ₃ H ₃	39	·	3
Methylacetylene	C ₃ H ₄	40		1, 7, 8
Allene	C ₃ H ₄	40		1, 7, 8
Allyl	C ₃ H ₅	41	<u> </u>	3
Propene	C ₃ H ₆	42		1-6, 8
Propane	C ₃ H ₈	44	\sim	1, 4-6, 9
Diacetylene	C ₄ H ₂	50		8
Vinylacetylene	C ₄ H ₄	52	/	3, 8
1-Butyne	C ₄ H ₆	54		3, 8
1,3-Butadiene	C ₄ H ₆	54		1, 6, 8
1,2-Butadiene	C_4H_6	54		8
1-Butene	C ₄ H ₈	56		1, 6, 8
2-Butene	C ₄ H ₈	56	\sim	1, 6, 8
<i>i</i> -Butene	C ₄ H ₈	56		1,6
<i>n</i> -Butane	C ₄ H ₁₀	56	\sim	4, 9
<i>i</i> -Butane	C ₄ H ₁₀	56	\rightarrow	1
Cyclopentadienyl	C ₅ H ₅	65	Č.	3
Cyclopentadiene	C ₅ H ₆	66		1-3, 5-8, 10
3-Penten-1-yne	C ₅ H ₆	66		8
Cyclopentene	C ₅ H ₈	68		1, 2, 4-6, 8, 10
1,4-Pentadiene	C ₅ H ₈	68		8
1,3-Pentadiene	C ₅ H ₈	68		3

 Table S1. Species reported in previous experimental studies on JP-10.

2-Methyl-1,3-butadiene	C ₅ H ₈	68		1
Cyclopentane	C ₅ H ₁₀	70	\bigcirc	4, 5
1-Pentene	C ₅ H ₁₀	70		1
2-Methyl-1-butene	C ₅ H ₁₀	70		1
Fulvene	C ₆ H ₆	78		1
Benzene	C ₆ H ₆	78		1, 2, 5-11
1-Methylcyclopentadiene	C ₆ H ₈	80		1, 8
2-Methylcyclopentadiene	C ₆ H ₈	80		1
3-Methylene-cyclopentene	C ₆ H ₈	80		8
1,3-Cyclohexadiene	C ₆ H ₈	80		31
1,4-Cyclohexadiene	C ₆ H ₈	80		1
1,5-Hexadiene	C ₆ H ₁₀	82		2
1,3-Hexadiene	C ₆ H ₁₀	82		1
1-Methylcyclopentene	C ₆ H ₁₀	82	\bigcirc	9
Cyclohexene	C ₆ H ₁₀	82		12
Methylcyclopentane	C ₆ H ₁₀	84	$\bigcirc -$	9
Benzyl	C ₇ H ₇	91		3
1-Ethynyl-cyclopentene	C ₇ H ₈	92		5, 10

3-Ethynyl-cyclopentene	C ₇ H ₈	92	1, 5
Toluene	C ₇ H ₈	92	1-3, 5, 6, 8-11
3-Methylidenecyclohexa-1,4-diene	C ₇ H ₈	92	1
1,3,5-Cycloheptatriene	C ₇ H ₈	92	8
2-Propenylidene-cyclobutene	C ₇ H ₈	92	8
1,2-Dimethylcyclopentadiene	C ₇ H ₁₀	94	12
1,3-Bis(methylene)cyclopentane	C ₇ H ₁₀	94	10
3-Ethenyl-cyclopentene	C ₇ H ₁₀	94	8
1,3-Cycloheptadiene	C ₇ H ₁₀	94	8
Bicyclo(4.1.0)hept-2-ene	C ₇ H ₁₀	94	8, 10
2-Norbornene	C ₇ H ₁₀	94	1
1-Methylcyclohexa-1,3-diene	C ₇ H ₁₀	94	1
1-Methylcyclohexa-2,4-diene	C ₇ H ₁₀	94	1
Ethenylcyclopentene	C ₇ H ₁₀	94	1
Ethylcyclopentene	C ₇ H ₁₂	96	9

Ethylidenecyclopentane	C ₇ H ₁₂	96		9
Phenylacetylene	C ₈ H ₆	102		3, 8
Styrene	C ₈ H ₈	104		1, 8
1-Ethenyl-3-methylene-cyclopentene	C ₈ H ₁₀	106		8
Ethylbenzene	C ₈ H ₁₀	106		1, 3, 8, 9
<i>p</i> -Xylene	C ₈ H ₁₀	106		1
o-Xylene	C ₈ H ₁₀	106		1, 8, 9
Tricyclo[3.2.1.0(2,4)]oct-6-ene	C ₈ H ₁₀	106		1
1,2,3,3a,4,6a-Hexahydropentalene	C ₈ H ₁₂	108	$\langle \rangle$	5, 8-10
Bicyclo[3.3.0]oct-1(5)-ene	C ₈ H ₁₂	108		1
<i>cis</i> -Octahydropentalene	C ₈ H ₁₄	110	H HINT H	9
Propylcyclopentane	C ₈ H ₁₆	112		9
Indene	C ₉ H ₈	116		1, 3, 8
Indane	C ₉ H ₁₀	118		8
Propenyl benzene	C ₉ H ₁₀	118		1, 8

1-Ethenyl-2-methylbenzene	C ₉ H ₁₀	118	1
Propylbenzene	C ₉ H ₁₂	120	1
1,2,4-Trimethylbenzene	C ₉ H ₁₂	120	1
1,3,5,7,9-Decapentayne	C ₁₀ H ₂	122	3
3-Methylcyclooctene	C ₉ H ₁₆	124	9
Naphthalene	C10H8	128	1, 8, 10, 11
Benzofulvene	C ₁₀ H ₈	128	1
1-Methylindene	C ₁₀ H ₁₀	130	1
2-Methylindene	C ₁₀ H ₁₀	130	1, 10
3-Methylindene	C ₁₀ H ₁₀	130	1
Dicyclopentadiene	C ₁₀ H ₁₀	130	10
2,3-Dihydro-1-methyl-1H-indene	C ₁₀ H ₁₂	132	4
5,6-Dihydrodicyclopentadiene	C ₁₀ H ₁₂	132	1, 10

2,3-Dihydro-4-methyl-1H-Indene	C ₁₀ H ₁₂	132		10
1,2,3,4-Tetrahydronaphthalene	C ₁₀ H ₁₂	132		1, 10
3-Butenylbenzene	C ₁₀ H ₁₂	132		1
(1-Methyl-1-propenyl)-Benzene	C ₁₀ H ₁₂	132		10
4-Ethyl-3-ethylidene-cyclohexene	$C_{10}H_{16}$	136		8
4-Methyl-2,3,4,5,6,7-hexahydro-1H-indene	C ₁₀ H ₁₆	136		4
3-Cyclopentylcyclopentene	C ₁₀ H ₁₆	136	$\bigcirc \frown \bigcirc$	2, 5, 8
1-Cyclopentylcyclopentene	C ₁₀ H ₁₆	136	$\bigcirc \frown \bigcirc$	4, 10
Bicyclopentylidene	C ₁₀ H ₁₆	136		4
Adamantane	C ₁₀ H ₁₆	136	Ð	1, 4, 10
1,2-Diethenyl-cyclohexane	C ₁₀ H ₁₆	136		8
exo-Tetrahydrodicyclopentadiene	C ₁₀ H ₁₆	136	$\langle \rangle$	1-12
4-Methyl-1-(1-methyethenyl)cyclohexene	C ₁₀ H ₁₆	136		10
Cyclopentylcyclopentane	C ₁₀ H ₁₈	138	$\bigcirc \bigcirc \bigcirc$	4

2,6,6-Trimethyl-bicyclo(3.1.1)heptane	$C_{10}H_{18}$	138	- E	8
trans-Decalin	C ₁₀ H ₁₈	138		4
1-Methylnaphthalene	C ₁₁ H ₁₀	142		1
2-Methylnaphthalene	C ₁₁ H ₁₀	142		1
Acenaphthylene	$C_{12}H_8$	152		1
Acenaphthene	C ₁₂ H ₁₀	154		1
2-Ethenylnaphthalene	C ₁₂ H ₁₀	154		1
Biphenyl	C ₁₂ H ₁₀	154		1
Fluorene	C ₁₃ H ₁₀	166		1
3-Methyl-1H-fluorene	C ₁₄ H ₁₂	180		1
1-Methyl-1H-fluorene	C ₁₄ H ₁₂	180		1
9-Methyl-1H-fluorene	C ₁₄ H ₁₂	180		1

1H-Phenalene	C ₁₃ H ₁₀	166	1
Phenanthrene	$C_{14}H_{10}$	178	1
Anthracene	C ₁₄ H ₁₀	178	1
9,10-Dihydro-anthracene	C ₁₄ H ₁₂	180	1

Distance				Tempera	ature (K)			
(mm)	927 K	949 K	972 K	994 K	1016 K	1038 K	1061 K	1083 K
0	538	549	559	569	580	590	600	611
10	622	636	651	666	680	695	710	724
20	695	713	731	749	767	785	803	821
30	764	785	807	828	849	870	892	913
40	814	837	860	883	906	929	951	974
50	854	878	902	925	949	973	997	1021
60	879	903	928	952	976	1000	1025	1049
70	895	919	943	966	990	1014	1038	1061
80	905	929	953	976	1000	1023	1047	1070
90	913	936	960	983	1006	1030	1053	1077
100	919	942	966	989	1012	1035	1058	1081
105	921	944	967	990	1013	1036	1058	1081
110	923	946	969	991	1014	1037	1060	1082
115	924	947	969	992	1014	1037	1059	1082
120	926	948	971	993	1015	1038	1060	1083
125	926	949	971	993	1016	1038	1060	1083
130	927	949	972	994	1016	1038	1061	1083
135	927	949	972	994	1016	1038	1061	1083
140	927	949	972	994	1016	1038	1060	1082
145	927	949	971	992	1014	1036	1058	1080
150	926	947	969	991	1012	1034	1056	1077
155	925	946	968	989	1010	1032	1053	1075
160	923	944	966	987	1008	1029	1051	1072
165	920	941	963	984	1005	1026	1047	1068
170	918	939	960	981	1002	1023	1043	1064
175	916	937	958	978	999	1020	1041	1061
180	913	933	954	974	994	1015	1035	1056
185	909	930	950	970	991	1011	1031	1052
190	905	925	945	964	984	1004	1024	1044
195	898	918	938	957	977	996	1016	1035
200	888	907	927	946	965	984	1003	1022
205	876	894	912	929	947	965	983	1001
210	860	877	895	912	929	947	964	982
215	833	848	863	877	892	907	922	936
220	797	811	825	838	852	866	880	894
225	747	757	768	778	788	798	808	818

Table S2. Temperature profiles measured in the JP-10 pyrolysis (NSRL). 927 K, 949 K, 972 K, 994 K, 1016 K, 1038 K, 1061 K and 1083 K in the head line define the names of temperature profiles.

Table S3. Photoionization cross sections (Mb, 1 Mb = 10^{-22} m²) of the species at selected energies exploited for the calculations of the branching ratios in this work.

Service	Farmula	Maga	Ionization				Phot	on Energ	gy (eV)				Def
Species	Formula	IVIASS	energy (eV)	8.0	8.4	9.0	9.5	10.0	10.5	11.0	11.5	15.5	Kel.
Hydrogen	H ₂	2	13.60	-	-	-	-	-	-	-	-	4.73	13
Methyl	CH ₃	15	9.84	-	-	-	-	4.78	5.81	-	-	-	14
Methane	CH ₄	16	12.61	-	-	-	-	-	-	-	-	23.87	15
Acetylene	C ₂ H ₂	26	11.40	-	-	-	-	-	-	-	18.26	-	16
Vinyl	C ₂ H ₃	27	8.25	0.37	1.87	4.94	8.04	11.06	13.32	-	-	-	17
Ethylene	C ₂ H ₄	28	10.51	-	-	-	-	-	0.92	7.79	8.02	-	15
Ethyl	C ₂ H ₅	29	8.12	-	0.43	2.95	4.36	5.06	5.52	5.64	5.37	-	18
Propargyl	C ₃ H ₃	C ₃ H ₃ 39 8.67		-	-	14.45	26.56	21.09	26.29	-	-	-	14
Allene	C ₃ H ₄	40	9.69	-	-	-	-	5.66	15.48	22.26	25.84	-	19
Methylacetylene	C ₃ H ₄	40	10.36	-	-	-	-	-	23.06	43.84	42.1	-	15
Allyl	C ₃ H ₅ 41		8.18	0.82	3.41	5.68	5.64	6.23	6.09	-	-	-	20
Propene	C ₃ H ₆	42	9.73	-	-	-	-	7.05	11.09	12.41	13.35	-	21
Diacetylene	C ₄ H ₂	50	10.17	-	-	-	-	0.04	23.82	25.79	33.84	-	16
1,2,3-Butatriene	C ₄ H ₄	52	9.25	-	-	0.02	3.9	7.54	8.43	10.29	12.15	-	Est.
Vinylacetylene	C ₄ H ₄	52	9.58	-	-	-	0.25	24.49	33.83	37.61	39.92	-	16
1,3-Butadiene	C ₄ H ₆	54	9.07	-	-	0.02	8.48	13.96	16.44	19.91	22.45	-	19
1-Butene	C ₄ H ₈	56	9.55	-	-	-	-	9.43	9.91	11.1	12.42	-	22
2-Butene	C ₄ H ₈	56	9.11	-	-	0.01	5.24	9.06	11.04	14.05	19.17	-	22
Ethynylallene	C ₅ H ₄	64	9.25	-	-	0.53	7.85	28.09	35.35	44.81	48.66	-	Est.
Cyclopentadienyl	C ₅ H ₅	65	8.41	-	-	3.78	4.6	8.01	10.03	-	-	-	23
Cyclopentadiene	C ₅ H ₆	66	8.57	-	-	8.52	10.05	-	-	-	-	-	24
1,3-Pentadiene	C ₅ H ₈	68	8.59	-	-	6.07	12.71	17.24	20.56	21	19.7	-	19
Cyclopentene	C ₅ H ₈	68	9.01	-	-	0.21	6.18	11.15	12.57	14.22	16.4	-	16
Fulvene	C ₆ H ₆	78	8.36	-	0.56	4.59	7.04	7.87	9.19	-	-	-	Est.
Benzene	C ₆ H ₆	78	9.24	-	-	-	11.05	24.28	31.81	38.6	39.25	-	16
1,3-Cyclohexadiene	C ₆ H ₈	80	8.25	-	7.67	20.32	18.39	22.52	27.65	35.76	37.3	-	22
1,4-Cyclohexadiene	C ₆ H ₈	80	8.82	-	-	9.39	21.18	19.25	23.07	26.27	33.16	-	Est.
Cyclohexene	C ₆ H ₁₀	82	8.95	-	-	1.5	8.9	11.56	14.81	18.02	19.46	-	22

Fulvenallenyl	C_7H_5	89	8.26	0	0.45	3.56	7.41	10.14	11.39	-	-	-	Est.
Fulvenallene	C_7H_6	90	8.29	-	1.88	11.73	18.25	22.11	30	33.31	31.12	-	Est.
5-Methylene-1,3-cyclohexadiene	C_7H_8	92	7.90	0.72	2.99	4.53	7.85	8.94	14.01	-	-	-	Est.
Toluene	C_7H_8	92	8.83	-	-	5.02	18.54	26.02	31.29	39.33	51.27	-	25
Phenylacetylene	C_8H_6	102	8.82	-	-	14.82	29.39	52.4	62.42	76.97	101.21	-	25
Benzocyclobutene	C_8H_6	102	7.50	10.07	12.93	15.23	19.33	21.29	-	-	-	-	Est.
o-Xylylene	C_8H_8	104	7.75	5.01	12.08	20.73	29.54	41.28	53.93	-	-	-	Est.
Styrene	C_8H_8	104	8.46	-	0.01	10.36	26.33	32.08	43.19	56.81	66.9	-	25
1,3,5-Cyclooctatriene	C_8H_{10}	106	7.90	3.24	10.07	13.16	16.48	18.77	-	-	-	-	Est.
o-Xylene	C_8H_{10}	106	8.56	-	-	8.22	17.68	24.17	34.08	45.44	53.04	-	25
Indene	C_9H_8	116	8.14	-	3.37	13.6	27.61	40.58	52.19	62.87	86.32	-	25
Indane	$C_{9}H_{10}$	118	8.54	-	0.01	8.36	18.7	26.7	33.29	42.75	57.6	-	25
Naphthalene	$C_{10}H_8$	128	8.14	-	4.49	13.22	21.34	39.81	51.74	61.42	86.99	-	Est.
Acenaphthylene	$C_{12}H_8$	152	8.12	-	3.57	13.92	24.92	38.52	48.86	54.03	-	-	Est.
Biphenyl	$C_{12}H_{10}$	154	8.16	-	2.53	9.14	21.22	34.51	50.63	58.65	-	-	Est.

Note: Molecular hydrogen and methane at 16.64 eV in NSRL were measured in the cold gas measurement (see manuscript). Thus, their photoionization cross sections at 16.64 eV in the database were not used for the branching ratio calculation.

S-raniar		Mass	Ionization			ALS						NSRI			
Species		Mass	energy (eV)	1200 K	1300 K	1400 K	1500 K	1600 K	949 K	972 K	994 K	1016 K	1038 K	1061 K	1083 K
Methyl	CH ₃	15	9.84	-	9.80	9.75	9.75	9.75	-	-	-	-	-	-	-
Acetylene	C_2H_2	26	11.40	-	-	11.35	11.35	11.35	-	-	11.35	11.35	11.40	11.35	11.35
Vinyl	C_2H_3	27	8.25	-	8.25	8.25	8.25	8.25	-	-	-	-	-	-	-
Ethylene	C_2H_4	28	10.51	-	10.45	10.45	11.45	10.45	10.50	10.45	10.45	10.45	10.50	10.45	10.45
Ethyl	C_2H_5	29	8.12	8.15	8.10	8.10	8.10	8.15	-	-	-	-	-	-	-
Propargyl	C_3H_3	39	8.67	-	-	-	8.65	8.65	-	-	-	-	-	-	-
Allene	C_3H_4	40	9.69	-	9.70	9.65	9.70	9.70	-	9.70	9.70	9.70	9.70	9.70	9.70
Methylacetylene	C_3H_4	40	10.36	-	-	10.35	10.35	10.35	-	-	10.40	10.35	10.35	10.35	10.35
Allyl	C_3H_5	41	8.18	8.15	8.10	8.10	8.10	8.10	-	-	-	-	-	-	-
Propene	C_3H_6	42	9.73	-	9.70	9.75	9.70	9.70	-	9.70	9.70	9.70	9.75	9.70	9.75
Diacetylene	C_4H_2	50	10.17	-	-	-	-	10.15	-	-	-	-	-	-	-
1,2,3-Butatriene	C_4H_4	52	9.25	-	-	-	9.25	9.25	-	-	-	-	-	-	-
Vinylacetylene	C_4H_4	52	9.58	-	-	-	9.55	9.55	-	-	-	9.55	9.55	9.55	9.55
1,3-Butadiene	C_4H_6	54	9.07	-	9.00	9.00	9.00	9.00	-	9.00	9.00	9.00	9.05	9.00	9.00
1-Butene	C_4H_8	56	9.55	-	-	-	9.55	9.55	-	9.55	9.50	9.50	9.55	9.55	9.50
2-Butene	C_4H_8	56	9.11	-	-	-	9.10	9.10	-	-	-	-	9.10	9.10	9.10
Ethynylallene	C_5H_4	64	9.25	-	-	-	-	9.20	-	-	-	-	-	-	-
Cyclopentadienyl	C_5H_5	65	8.41	-	-	8.40	8.40	8.40	-	-	-	-	-	-	-
Cyclopentadiene	C_5H_6	66	8.57	-	8.50	8.50	8.50	8.50	8.50	8.50	8.50	8.50	8.55	8.55	8.50
1,3-Pentadiene	C_5H_8	68	8.59	-	-	-	8.60	8.55	-	-	-	-	8.60	8.60	8.60
Cyclopentene	C_5H_8	68	9.01	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	9.00	-
Fulvene	C_6H_6	78	8.36	8.35	8.35	8.35	8.35	8.35	8.35	8.35	8.35	8.35	8.35	8.35	8.35
Benzene	C_6H_6	78	9.24	-	9.25	9.25	9.20	9.20	-	9.25	9.20	9.20	9.25	9.20	9.20
1,3-Cyclohexadiene	C_6H_8	80	8.25	-	-	-	8.25	-	-	-	8.20	8.20	8.20	8.15	8.15
1,4-Cyclohexadiene	C_6H_8	80	8.82	-	-	8.80	8.80	-	-	-	-	-	-	-	-
Cyclohexene	$C_{6}H_{10}$	82	8.95	8.95	9.00	9.00	8.95	8.95	-	-	-	-	-	-	-
Fulvenallenyl	C ₇ H ₅	89	8.26	-	-	-	-	8.25	-	-	-	-	-	-	-
Fulvenallene	C_7H_6	90	8.29	-	-	-	8.30	8.25	-	-	-	-	-	-	8.25
5-Methylene-1,3- cyclohexadiene	$\mathrm{C_7H_8}$	92	7.90	-	-	-	-	-	7.90	7.90	7.90	7.90	7.90	7.90	7.90
Toluene	C7H8	92	8.83	-	8.80	8.80	8.80	8.85	-	-	8.85	8.80	8.80	8.80	8.80
Phenylacetylene	C ₈ H ₆	102	8.82	-	-	-	-	8.85	-	-	-	-	-	-	8.80
Styrene	C ₈ H ₈	104	8.46	-	-	-	8.45	8.45	-	-	8.50	8.50	8.45	8.45	8.45

Table S4. The photoionization energies (eV) of the products observed in this work.

o-Xylene	C ₈ H ₁₀	106	8.56	-	8.55	8.60	8.55	8.55	-	-	8.55	8.55	8.60	8.55	8.55
1,3,5- Cyclooctatriene	C ₈ H ₁₀	106	7.90	-	-	-	-	-	7.90	7.90	7.90	7.90	7.90	7.90	7.90
Indene	C ₉ H ₈	116	8.14	-	-	-	-	8.15	-	-	-	8.15	8.15	8.10	8.10
Indane	C ₉ H ₁₀	118	8.54	-	-	-	8.45	8.45	-	-	8.50	8.45	8.45	8.45	8.45
Naphthalene	C ₁₀ H ₈	128	8.14	-	-	-	-	-	-	-	-	-	8.15	8.15	8.15
Acenaphthylene	C ₁₂ H ₈	152	8.12	-	-	-	-	-	-	-	-	-	-	-	8.10
Biphenyl	C ₁₂ H ₁₀	154	8.16	-	-	-	-	-	-	-	-	-	-	-	8.10

Note: Due to the low photoionization energies of benzocyclobutene (7.50 eV) and *o*-xylylene (7.75 eV) which are lower than the experiment energy range, the two products are not listed in the table.

Table S5. Mole fractions of species observed in JP-10 pyrolysis (ALS) at the temperature range from 1200 K to 1600 K. The numbers in each bracket present the lower and upper uncertainties, respectively.

Species		Temperature								
Species		1200 K	1300 K	1400 K	1500 K	1600 K				
Hydrogen	H_2	-	5.53E-06 (-1.64E-06, +1.90E-06)	1.18E-05 (-2.83E-06, +3.06E-06)	3.36E-05 (-7.92E-06, +8.52E-06)	1.07E-04 (-2.44E-05, +2.59E- 05)				
Methyl	CH ₃	-	1.34E-06 (-5.59E-07, +7.05E-07)	7.65E-06 (-1.92E-06, +2.12E-06)	3.48E-05 (-7.73E-06, +8.12E-06)	5.92E-05 (-1.33E-05, +1.40E- 05)				
Acetylene	C_2H_2	-	-	6.91E-07 (-2.22E-07, +2.65E-07)	6.87E-06 (-1.55E-06, +1.64E-06)	3.36E-05 (-7.04E-06, +7.20E- 06)				
Vinyl	C_2H_3	-	2.44E-06 (-1.34E-06, +2.94E-06)	2.95E-06 (-1.60E-06, +3.46E-06)	4.84E-06 (-2.55E-06, +5.36E-06)	4.27E-06 (-2.30E-06, +4.91E- 06)				
Ethylene	C_2H_4	-	2.88E-05 (-6.53E-06, +6.92E-06)	9.54E-05 (-2.06E-05, +2.13E-05)	3.14E-04 (-6.65E-05, +6.83E-05)	4.97E-04 (-1.07E-04, +1.11E- 04)				
Ethyl	C_2H_5	7.74E-06 (-2.13E-06, +2.41E-06)	1.63E-05 (-3.86E-06, +4.16E-06)	2.94E-05 (-6.59E-06, +6.95E-06)	3.02E-05 (-6.70E-06, +7.03E-06)	1.23E-05 (-3.12E-06, +3.44E- 06)				
Propargyl	C_3H_3	-	-	-	3.31E-06 (-7.92E-07, +8.57E-07)	1.53E-05 (-3.86E-06, +4.25E- 06)				
Allene	C_3H_4	-	4.69E-07 (-3.01E-07, +4.05E-07)	3.52E-06 (-7.38E-07, +7.55E-07)	3.19E-05 (-7.71E-06, +8.38E-06)	9.48E-05 (-2.29E-05, +2.49E- 05)				
Methylacetylene	C_3H_4	-	-	7.25E-07 (-2.07E-07, +2.37E-07)	1.09E-05 (-2.56E-06, +2.75E-06)	4.45E-05 (-1.01E-05, +1.07E- 05)				
Allyl	C_3H_5	4.77E-06 (-1.39E-06, +1.61E-06)	2.37E-05 (-5.92E-06, +6.50E-06)	7.46E-05 (-1.81E-05, +1.96E-05)	1.65E-04 (-3.97E-05, +4.31E-05)	9.08E-05 (-2.26E-05, +2.48E- 05)				
Propene	C ₃ H ₆	-	9.85E-07 (-3.14E-07, +3.72E-07)	2.80E-06 (-6.66E-07, +7.18E-07)	1.06E-05 (-2.41E-06, +2.55E-06)	1.69E-05 (-3.82E-06, +4.04E- 06)				

Diacetylene	C ₄ H ₂	-	-	-	-	1.07E-06 (-2.79E-07, +3.11E- 07)
1,2,3-Butatriene	C ₄ H ₄	-	-	-	5.98E-07 (-4.73E-07, +1.29E-06)	9.38E-07 (-6.19E-07, +1.54E- 06)
Vinylacetylene	C_4H_4	-	-	-	1.09E-06 (-2.66E-07, +2.90E-07)	4.12E-06 (-8.87E-07, +9.18E- 07)
1,3-Butadiene	C_4H_6	-	1.81E-06 (-4.51E-07, +4.95E-07)	7.64E-06 (-1.66E-06, +1.72E-06)	3.18E-05 (-6.78E-06, +7.00E-06)	5.55E-05 (-1.20E-05, +1.25E- 05)
1-Butene	C_4H_8	-	-	-	1.19E-06 (-3.66E-07, +4.29E-07)	1.82E-06 (-5.95E-07, +7.11E- 07)
2-Butene	C_4H_8	-	-	-	3.92E-07 (-1.76E-07, +2.24E-07)	6.17E-07 (-3.13E-07, +4.08E- 07)
Ethynylallene	$\mathrm{C}_{5}\mathrm{H}_{4}$	-	-	-	-	8.87E-07 (-4.66E-07, +9.76E- 07)
Cyclopentadienyl	C_5H_5	-	-	6.07E-06 (-3.17E-06, +6.60E-06)	3.95E-05 (-2.03E-05, +4.18E-05)	1.01E-04 (-5.13E-05, +1.05E- 04)
Cyclopentadiene	C_5H_6	-	1.91E-05 (-4.88E-06, +5.41E-06)	7.77E-05 (-1.71E-05, +1.79E-05)	2.54E-04 (-5.60E-05, +5.86E-05)	3.37E-04 (-7.43E-05, +7.78E- 05)
1,3-Pentadiene	C_5H_8	-	-	-	5.96E-06 (-1.70E-06, +1.95E-06)	1.15E-05 (-2.78E-06, +3.01E- 06)
Cyclopentene	C ₅ H ₈	1.67E-06 (-6.77E-07, +8.49E-07)	6.62E-06 (-1.75E-06, +1.97E-06)	1.78E-05 (-3.73E-06, +3.82E-06)	3.74E-05 (-8.44E-06, +8.92E-06)	2.04E-05 (-4.76E-06, +5.09E- 06)
Fulvene	C ₆ H ₆	1.41E-06 (-8.59E-07, +2.03E-06)	1.85E-05 (-1.05E-05, +2.36E-05)	6.59E-05 (-3.45E-05, +7.22E-05)	1.69E-04 (-8.79E-05, +1.82E-04)	1.31E-04 (-6.73E-05, +1.38E- 04)
Benzene	C ₆ H ₆	-	2.14E-06 (-6.83E-07, +8.11E-07)	1.20E-05 (-2.87E-06, +3.11E-06)	5.69E-05 (-1.24E-05, +1.29E-05)	1.37E-04 (-3.14E-05, +3.34E-

						05)
1,3-Cyclohexadiene	C_6H_8	-	_	-	2.56E-06 (-5.66E-07, +5.94E-07)	-
1,4-Cyclohexadiene	C_6H_8	-	_	9.44E-07 (-4.02E-07, +5.08E-07)	3.95E-06 (-9.66E-07, +1.05E-06)	-
Cyclohexene	C ₆ H ₁₀	8.10E-07 (-4.21E-07, +5.51E-07)	7.84E-07 (-2.63E-07, +3.15E-07)	1.09E-06 (-4.41E-07, +5.53E-07)	1.74E-06 (-5.96E-07, +7.20E-07)	8.68E-07 (-3.32E-07, +4.11E- 07)
Fulvenallenyl	C_7H_5	-	-	-	-	7.51E-07 (-4.28E-07, +9.60E- 07)
Fulvenallene	C_7H_6	-	-	-	4.99E-07 (-2.61E-07, +5.45E-07)	3.78E-06 (-1.92E-06, +3.91E- 06)
5-Methylene-1,3-cyclohexadiene	$\mathrm{C_7H_8}$	2.69E-08 (-1.87E-08, +4.77E-08)	4.61E-07 (-2.62E-07, +5.88E-07)	1.91E-06 (-1.01E-06, +2.14E-06)	9.32E-06 (-4.89E-06, +1.03E-05)	8.77E-06 (-4.77E-06, +1.03E- 05)
Toluene	C_7H_8	-	3.02E-07 (-1.68E-07, +3.70E-07)	1.50E-06 (-7.68E-07, +1.57E-06)	5.16E-06 (-2.76E-06, +5.87E-06)	7.81E-06 (-4.04E-06, +8.37E- 06)
Phenylacetylene	C_8H_6	-	-	-	-	2.07E-07 (-5.39E-08, +6.01E- 08)
Benzocyclobutadiene	C_8H_6	-	-	-	-	2.58E-07 (-1.42E-07, +3.09E- 07)
o-Xylylene	C_8H_8	-	-	-	3.47E-07 (-1.92E-07, +4.23E-07)	5.05E-07 (-2.62E-07, +5.44E- 07)
Styrene	C_8H_8	-	-	-	1.42E-06 (-3.51E-07, +3.85E-07)	3.70E-06 (-8.17E-07, +8.55E- 07)
1,3,5-Cyclooctatriene	C ₈ H ₁₀	9.29E-09 (-9.29E-09, +2.79E-08)	2.37E-07 (-1.56E-07, +3.87E-07)	9.52E-07 (-5.06E-07, +1.07E-06)	2.46E-06 (-1.29E-06, +2.68E-06)	1.17E-06 (-6.33E-07, +1.36E- 06)
o-Xylene	C ₈ H ₁₀	-	2.21E-07 (-8.52E-08, +1.06E-07)	1.23E-06 (-3.08E-07, +3.38E-07)	3.49E-06 (-8.28E-07, +8.93E-07)	1.54E-06 (-3.82E-07, +4.19E- 07)

Indene	C ₉ H ₈	-	-	-	-	4.03E-07 (-9.63E-08, +1.04E- 07)
Indane	C ₉ H ₁₀	-	-	-	7.33E-07 (-1.91E-07, +2.14E-07)	1.02E-06 (-2.43E-07, +2.62E- 07)
JP-10	C ₁₀ H ₁₆	2.63E-04 (-1.80E-06, +1.80E-06)	2.59E-04 (-2.21E-06, +2.21E-06)	2.32E-04 (-3.11E-06, +3.11E-06)	9.17E-05 (-1.78E-06, +1.78E-06)	1.34E-05 (-7.41E-07, +7.41E- 07)

Encoiog		Temperature									
species		949 K	972 K	994 K	1,016 K	1,038 K	1,061 K	1,083 K			
				6.36E-05	1.64E-04	2.62E-04	3.62E-04	3.83E-04			
Hydrogen	H ₂	-	-	(-4.90E-05,	(-4.38E-05,	(-6.02E-05,	(-9.54E-05,	(-6.26E-05,			
				+5.85E-05)	+4.99E-05)	+6.78E-05)	+1.09E-04)	+6.81E-05)			
					2.58E-06	1.07E-05	2.74E-05	3.52E-05			
Methane	CH ₄	-	-	-	(-2.58E-06,	(-4.82E-06,	(-7.25E-06,	(-5.73E-06,			
					+3.10E-06)	+5.66E-06)	+8.25E-06)	+6.22E-06)			
				6.89E-07	4.47E-06	8.69E-06	1.85E-05	3.32E-05			
Acetylene	C_2H_2	-	-	(-2.06E-07,	(-1.26E-06,	(-2.63E-06,	(-5.58E-06,	(-8.08E-06,			
				+2.41E-07)	+1.45E-06)	+3.08E-06)	+6.51E-06)	+8.81E-06)			
		3.72E-06	1.70E-05	4.49E-05	1.03E-04	1.59E-04	2.14E-04	2.89E-04			
Ethylene	C ₂ H ₄	(-1.21E-06,	(-5.28E-06,	(-1.01E-05,	(-2.65E-05,	(-3.71E-05,	(-4.73E-05,	(-6.58E-05,			
		+1.44E-06)	+6.22E-06)	+1.06E-05)	+2.95E-05)	+3.98E-05)	+4.95E-05)	+6.98E-05)			
			1.65E-06	6.48E-06	1.32E-05	1.86E-05	2.85E-05	1.77E-05			
Allene	C ₃ H ₄	-	(-6.00E-07,	(-3.17E-06,	(-7.16E-06,	(-5.06E-06,	(-1.02E-05,	(-6.21E-06,			
			+7.35E-07)	+4.11E-06)	+9.43E-06)	+5.74E-06)	+1.25E-05)	+7.55E-06)			
				2.11E-06	6.01E-06	1.14E-05	1.91E-05	4.21E-05			
Methylacetylene	C ₃ H ₄	-	-	(-9.05E-07,	(-2.30E-06,	(-2.94E-06,	(-5.18E-06,	(-9.70E-06,			
				+1.15E-06)	+2.84E-06)	+3.27E-06)	+5.86E-06)	+1.03E-05)			
			3.73E-06	1.12E-05	2.62E-05	3.72E-05	4.40E-05	4.85E-05			
Propene	C ₃ H ₆	-	(-9.24E-07,	(-2.86E-06,	(-6.42E-06,	(-8.62E-06,	(-1.00E-05,	(-1.13E-05,			
			+1.01E-06)	+3.17E-06)	+7.01E-06)	+9.21E-06)	+1.06E-05)	+1.21E-05)			
					7.04E-07	1.23E-06	2.82E-06	4.61E-06			
Vinylacetylene	C ₄ H ₄	-	-	-	(-2.00E-07,	(-3.37E-07,	(-6.93E-07,	(-1.18E-06,			
					+2.29E-07)	+3.83E-07)	+7.57E-07)	+1.31E-06)			
			1.22E-06	3.74E-06	9.83E-06	1.40E-05	2.08E-05	2.77E-05			
1,3-Butadiene	C ₄ H ₆	-	(-3.47E-07,	(-9.28E-07,	(-2.55E-06,	(-3.42E-06,	(-4.80E-06,	(-6.15E-06,			
			+3.98E-07)	+1.02E-06)	+2.83E-06)	+3.74E-06)	+5.12E-06)	+6.45E-06)			
			1.92E-06	6.93E-06	1.24E-05	1.46E-05	8.92E-06	3.56E-06			
1-Butene	C ₄ H ₈	-	(-5.48E-07,	(-1.96E-06,	(-2.84E-06,	(-3.32E-06,	(-2.45E-06,	(-1.06E-06,			
			+6.31E-07)	+2.25E-06)	+3.01E-06)	+3.53E-06)	+2.78E-06)	+1.23E-06)			
						4.37E-08	1.11E-06	8.39E-07			
2-Butene	C ₄ H ₈	-	-	-	-	(-4.37E-08,	(-5.46E-07,	(-6.25E-07,			
						+6.12E-08)	+7.07E-07)	+8.53E-07)			

Table S6. Mole fractions of species observed in JP-10 pyrolysis (NSRL) at the temperature range from 949 K to 1083 K. The numbers in each bracket present the lower and upper uncertainties, respectively.

		5.29E-06	1.46E-05	3.61E-05	7.72E-05	1.18E-04	1.80E-04	2.05E-04
cyclopentadiene	C ₅ H ₆	(-2.28E-06,	(-3.77E-06,	(-8.69E-06,	(-1.87E-05,	(-2.55E-05,	(-4.36E-05,	(-4.82E-05,
	5 0	+2.89E-06)	+4.20E-06)	+9.42E-06)	+2.03E-05)	+2.65E-05)	+4.74E-05)	+5.18E-05)
		7.05E-07	4.52E-06	8.94E-06	1.37E-05	8.43E-06	6.74E-06	
Cyclopentene	C ₅ H ₈	(-3.40E-07,	(-1.29E-06,	(-2.97E-06,	(-3.73E-06,	(-2.30E-06,	(-2.25E-06,	-
5 1	5 0	+4.39E-07)	+1.48E-06)	+3.57E-06)	+4.23E-06)	+2.61E-06)	+2.70E-06)	
						2.63E-06	1.89E-06	3.89E-06
1.3-Pentadiene	C ₅ H ₈	_	-	-	_	(-9.15E-07.	(-6.75E-07.	(-1.56E-06.
,	5.0					+1.11E-06)	+8.23E-07)	+1.96E-06)
		4.88E-07	2.34E-06	1.19E-05	1.52E-05	1.37E-05	1.53E-05	9.29E-06
Fulvene	C ₆ H ₆	(-4.36E-07.	(-1.68E-06.	(-6.78E-06.	(-8.66E-06.	(-7.18E-06.	(-8.71E-06.	(-5.56E-06.
	-00	+1.26E-06)	+4.37E-06)	+1.53E-05)	+1.94E-05)	+1.50E-05)	+1.95E-05)	+1.29E-05)
			3.17E-06	7.76E-06	2.27E-05	4.28E-05	7.11E-05	9.39E-05
Benzene	C ₆ H ₆	_	(-9.41E-07.	(-2.37E-06.	(-6.05E-06.	(-1.16E-05.	(-1.67E-05.	(-2.04E-05.
	-00		+1.09E-06)	+2.77E-06)	+6.81E-06)	+1.31E-05)	+1.80E-05)	+2.12E-05)
				1.25E-06	3.92E-06	7.25E-06	1.01E-05	8.37E-06
1.3-Cyclohexadiene	C ₄ H ₈	_	_	(-4.53E-07.	(-1.30E-06.	(-2.10E-06.	(-2.56E-06.	(-2.17E-06.
-,	- 0 3			+5.55E-07)	+1.55E-06)	+2.42E-06)	+2.83E-06)	+2.41E-06)
								2.53E-07
Fulvenallene	C7H6	_	_	_	_	_	_	(-1.53E-07.
	- /0							+3.60E-07)
		1.69E-07	1.39E-06	4.88E-06	1.11E-05	9.87E-06	8.82E-06	5.47E-06
5-Methylene-1,3-	C7H8	(-1.69E-07.	(-7.74E-07.	(-2.61E-06.	(-7.09E-06.	(-5.53E-06.	(-4.82E-06.	(-3.49E-06.
cyclohexadiene	- / 0	+5.08E-07)	+1.71E-06)	+5.56E-06)	+1.72E-05)	+1.22E-05)	+1.05E-05)	+8.47E-06)
			1.03E-06	3.45E-06	6.93E-06	1.08E-05	1.41E-05	1.68E-05
Toluene	C7H8	_	(-3.81E-07.	(-9.00E-07.	(-2.07E-06.	(-2.99E-06.	(-3.77E-06.	(-4.05E-06.
	- /		+4.69E-07)	+1.01E-06)	+2.41E-06)	+3.41E-06)	+4.25E-06)	+4.40E-06)
								1.67E-07
Benzocyclobutadiene	C ₈ H ₆	_	-	-	_	_	_	(-1.14E-07.
	0 0							+2.87E-07)
								4.69E-07
Phenylacetylene	C ₈ H ₆	_	-	_	_	_	_	(-1.29E-07.
	- 0 0							+1.46E-07)
					4.32E-07	3.09E-07	1.89E-07	9.11E-07
o-Xylylene	C ₈ H ₈	-	-	-	(-3.25E-07.	(-2.13E-07.	(-1.60E-07.	(-5.66E-07.
	-0.0				+8.68E-07)	+5.41E-07)	+4.50E-07)	+1.35E-06)
	- au			6.00E-07	6.55E-07	2.23E-06	4.41E-06	5.17E-06
Styrene	C_8H_8	-	-	(-2.24E-07,	(-2.23E-07,	(-5.57E-07,	(-1.11E-06,	(-1.29E-06,

				+2.77E-07)	+2.69E-07)	+6.12E-07)	+1.22E-06)	+1.42E-06)
		8.90E-08	1.88E-07	7.44E-07	1.07E-06	1.24E-06	7.52E-07	1.94E-07
1,3,5-Cyclooctatriene	C ₈ H ₁₀	(-5.23E-08,	(-1.25E-07,	(-4.17E-07,	(-5.77E-07,	(-7.15E-07,	(-4.81E-07,	(-1.24E-07,
		+1.20E-07)	+3.12E-07)	+9.24E-07)	+1.23E-06)	+1.62E-06)	+1.17E-06)	+3.04E-07)
				1.95E-06	3.81E-06	5.31E-06	5.68E-06	4.30E-06
o-Xylene	C ₈ H ₁₀	-	-	(-5.49E-07,	(-1.28E-06,	(-1.36E-06,	(-1.46E-06,	(-1.10E-06,
				+6.29E-07)	+1.53E-06)	+1.51E-06)	+1.63E-06)	+1.23E-06)
					3.96E-07	7.90E-07	1.24E-06	1.73E-06
Indene	C ₉ H ₈	-	-	-	(-9.68E-08,	(-1.95E-07,	(-2.98E-07,	(-3.98E-07,
					+1.06E-07)	+2.14E-07)	+3.23E-07)	+4.24E-07)
				4.93E-07	1.12E-06	1.32E-06	1.69E-06	1.43E-06
Indane	C ₉ H ₁₀	-	-	(-1.30E-07,	(-3.34E-07,	(-3.56E-07,	(-4.31E-07,	(-3.86E-07,
				+1.46E-07)	+3.89E-07)	+4.02E-07)	+4.77E-07)	+4.36E-07)
						4.53E-07	8.13E-07	1.67E-06
Naphthalene	C10H8	-	-	-	-	(-1.36E-07,	(-2.29E-07,	(-4.28E-07,
						+1.58E-07)	+2.62E-07)	+4.75E-07)
								2.34E-07
Acenaphthylene	$C_{12}H_8$	-	-	-	-	-	-	(-1.38E-07,
								+3.19E-07)
								3.82E-07
Biphenyl	C ₁₂ H ₁₀	-	-	-	-	-	-	(-2.21E-07,
								+5.04E-07)
		2.65E-04	2.35E-04	1.99E-04	1.50E-04	8.06E-05	3.79E-05	1.39E-05
JP-10	C ₁₀ H ₁₆	(-7.79E-06,	(-6.96E-06,	(-7.52E-06,	(-8.27E-06,	(-2.79E-06,	(-1.27E-06,	(-6.28E-07,
		+7.79E-06)	+6.96E-06)	+7.52E-06)	+8.27E-06)	+2.79E-06)	+1.27E-06)	+6.28E-07)

Figure S1. Mass discrimination measurement in NSRL. The factors are determined to be $\left(\frac{x}{30}\right)^{0.36267}$.

Figure S2-1. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (ALS) at 1200 K along with the experimental errors (gray area) and the reference PIE curves (red, green and blue lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit. JP-10 fragment means the photolysis fragment of JP-10. For m/z = 68, 78, 82, 92 and 106, the PIE curves present sharp increase above10.5 eV due to photolysis fragment of JP-10.

Figure S2-2-1. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (ALS) at 1300 K along with the experimental errors (gray area) and the reference PIE curves (red, green and blue lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit. For m/z = 66, the PIE curve presents sharp increase above10.5 eV due to photolysis fragment of JP-10.

Figure S2-2-2. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (ALS) at 1300 K along with the experimental errors (gray area) and the reference PIE curves (red, green and blue lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit. JP-10 fragment means the photolysis fragment of JP-10. For m/z = 68, 78, 82, 92 and 106, the PIE curves present sharp increase above10.5 eV due to photolysis fragment of JP-10.

Figure S2-3-1. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (ALS) at 1400 K along with the experimental errors (gray area) and the reference PIE curves (red, green and blue lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit.

Figure S2-3-2. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (ALS) at 1400 K along with the experimental errors (gray area) and the reference PIE curves (red, green and blue lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit. JP-10 fragment means the photolysis fragment of JP-10. For m/z = 66, 68, 80, 82, 92 and 106, the PIE curves present sharp increase above10.5 eV due to photolysis fragment of JP-10.

Figure S2-5-1. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (ALS) at 1500 K along with the experimental errors (gray area) and the reference PIE curves (red, green and blue lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit.

Figure S2-5-2. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (ALS) at 1500 K along with the experimental errors (gray area) and the reference PIE curves (red, green and blue lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit. JP-10 fragment means the photolysis fragment of JP-10. For m/z = 66, 68, 80 and 92, the PIE curves present sharp increase above10.5 eV due to photolysis fragment of JP-10.

Figure S2-5-3. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (ALS) at 1500 K along with the experimental errors (gray area) and the reference PIE curves (red, green and blue lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit.

Figure S3. PIE measurement of m/z = 91 in the temperature from 1300 K to 1600 K in ALS.

Figure S4. PIE measurement of m/z = 94 in the temperature from 1200 K to 1600 K in ALS. The PIE curves present sharp increase above10.5 eV due to photolysis fragment of JP-10.

Figure S5. PIE measurement of m/z = 108 in the temperature from 1200 K to 1600 K in ALS. The PIE curves present sharp increase above10.5 eV due to photolysis fragment of JP-10.

Figure S6-1. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (NSRL) at 949 K along with the experimental errors (gray area) and the reference PIE curves (blue, green and red lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit. JP-10 fragment means the photolysis fragment of JP-10.

Figure S6-2. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (NSRL) at 972 K along with the experimental errors (gray area) and the reference PIE curves (blue, green and red lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit. JP-10 fragment means the photolysis fragment of JP-10. For m/z = 66 and 68, the PIE curves present sharp increase above10.5 eV due to photolysis fragment of JP-10.

Figure S6-3-1. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (NSRL) at 994 K along with the experimental errors (gray area) and the reference PIE curves (blue, green and red lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit. JP-10 fragment means the photolysis fragment of JP-10.

Figure S6-3-2. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (NSRL) at 994 K along with the experimental errors (gray area) and the reference PIE curves (blue, green and red lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit. JP-10 fragment means the photolysis fragment of JP-10. For m/z = 80, the PIE curve presents sharp increase above10.5 eV due to photolysis fragment of JP-10.

Figure S6-4-1. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (NSRL) at 1016 K along with the experimental errors (gray area) and the reference PIE curves (blue, green and red lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit. JP-10 fragment means the photolysis fragment of JP-10. For m/z = 66 and 68, the PIE curves present sharp increase above10.5 eV due to photolysis fragment of JP-10.

Figure S6-4-2. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (NSRL) at 1016 K along with the experimental errors (gray area) and the reference PIE curves (blue, green and red lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit. JP-10 fragment means the photolysis fragment of JP-10.

Figure S6-5-1. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (NSRL) at 1038 K along with the experimental errors (gray area) and the reference PIE curves (blue, green and red lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit. JP-10 fragment means the photolysis fragment of JP-10.

Figure S6-5-2. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (NSRL) at 1038 K along with the experimental errors (gray area) and the reference PIE curves (blue, green and red lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit. JP-10 fragment means the photolysis fragment of JP-10.

Figure S6-6-1. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (NSRL) at 1061 K along with the experimental errors (gray area) and the reference PIE curves (blue, green and red lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit. JP-10 fragment means the photolysis fragment of JP-10. For m/z = 66 and 68, the PIE curves present sharp increase above10.5 eV due to photolysis fragment of JP-10.

Figure S6-6-2. Experimental photoionization efficiency curves (PIE, black lines) recorded from the decomposition of JP-10 (NSRL) at 1061 K along with the experimental errors (gray area) and the reference PIE curves (blue, green and red lines). In case of multiple contributions to one PIE curve, the red line resembles the overall fit. JP-10 fragment means the photolysis fragment of JP-10.

Figure S7. PIE measurement of m/z = 94 in the temperature from 949 K to 1083 K in NSRL. The PIE curves present sharp increase above10.5 eV due to photolysis fragment of JP-10.

Figure S8. PIE measurement of m/z = 108 in the temperature from 949 K to 1083 K in NSRL. The PIE curves present sharp increase above10.5 eV due to photolysis fragment of JP-10.

References

- 1. N. M. Vandewiele, G. R. Magoon, K. M. Van Geem, M.-F. Reyniers, W. H. Green and G. B. Marin, *Energy Fuels*, 2014, **28**, 4976-4985.
- 2. O. Herbinet, B. Sirjean, R. Bounaceur, R. Fournet, F. Battin-Leclerc, G. Scacchi and P.-M. Marquaire, *J. Phys. Chem. A*, 2006, **110**, 11298-11314.
- 3. H. Li, G. Liu, R. Jiang, L. Wang and X. Zhang, Combust. Flame, 2015, 162, 2177-2190.
- 4. S. H. Park, C. H. Kwon, J. Kim, B. H. Chun, J. W. Kang, J. S. Han, B. H. Jeong and S. H. Kim, *Ind. Eng. Chem. Res.*, 2010, **49**, 8319-8324.
- 5. Y. Xing, W. Fang, W. Xie, Y. Guo and R. Lin, Ind. Eng. Chem. Res., 2008, 47, 10034-10040.
- 6. P. N. Rao and D. Kunzru, J. Anal. Appl. Pyrolysis, 2006, 76, 154-160.
- 7. S. Nakra, R. J. Green and S. L. Anderson, Combust. Flame, 2006, 144, 662-674.
- 8. C. W. Gao, A. G. Vandeputte, N. W. Yee, W. H. Green, R. E. Bonomi, G. R. Magoon, H.-W. Wong, O. O. Oluwole, D. K. Lewis and N. M. Vandewiele, *Combust. Flame*, 2015, **162**, 3115-3129.
- T. J. Bruno, M. L. Huber, A. Laesecke, E. W. Lemmon and R. A. Perkins, *Tech. Rep. NISTIR*, 2006, 6640, 325.
- 10. G. Li, C. Zhang, H. Wei, H. Xie, Y. Guo and W. Fang, *Fuel*, 2016, 163, 148-156.
- 11. K. Wohlwend, L. Maurice, T. Edwards, R. Striebich, M. Vangsness and A. Hill, *J. Propul. Power*, 2001, **17**, 1258-1262.
- 12. R. Striebich and J. Lawrence, J. Anal. Appl. Pyrolysis, 2003, 70, 339-352.
- 13. C. Backx, G. R. Wight and M. J. V. d. Wiel, J. Phys. B, 1976, 9, 315-331.
- 14. J. D. Savee, S. Soorkia, O. Welz, T. M. Selby, C. A. Taatjes and D. L. Osborn, *J. Chem. Phys.*, 2012, **136**, 134307.
- 15. J. A. R. Samson, G. N. Haddad, T. Masuoka, P. N. Pareek and D. A. L. Kilcoyne, *J. Chem. Phys.*, 1989, **90**, 6925-6932.
- 16. T. A. Cool, J. Wang, K. Nakajima, C. A. Taatjes and A. Mcllroy, *Int. J. Mass spectrom.*, 2005, **247**, 18-27.
- 17. J. C. Robinson, N. E. Sveum and D. M. Neumark, J. Chem. Phys., 2003, 119, 5311-5314.
- 18. B. Gans, G. A. Garcia, S. Boyé-Péronne, J.-C. Loison, S. Douin, F. Gaie-Levrel and D. Gauyacq, J. *Phys. Chem. A*, 2011, **115**, 5387-5396.
- 19. B. Yang, J. Wang, T. A. Cool, N. Hansen, S. Skeen and D. L. Osborn, *Int. J. Mass spectrom.*, 2012, **309**, 118-128.
- 20. J. C. Robinson, N. E. Sveum and D. M. Neumark, Chem. Phys. Lett., 2004, 383, 601-605.
- 21. T. A. Cool, K. Nakajima, T. A. Mostefaoui, F. Qi, A. McIlroy, P. R. Westmoreland, M. E. Law, L. Poisson, D. S. Peterka and M. Ahmed, *J. Chem. Phys.*, 2003, **119**, 8356-8365.
- 22. J. Wang, B. Yang, T. A. Cool, N. Hansen and T. Kasper, Int. J. Mass spectrom., 2008, 269, 210-220.
- 23. N. Hansen, S. J. Klippenstein, J. A. Miller, J. Wang, T. A. Cool, M. E. Law, P. R. Westmoreland, T. Kasper and K. Kohse-Höinghaus, *J. Phys. Chem. A*, 2006, **110**, 4376-4388.
- 24. C. A. Taatjes, D. L. Osborn, T. M. Selby, G. Meloni, A. J. Trevitt, E. Epifanovsky, A. I. Krylov, B. Sirjean, E. Dames and H. Wang, *J. Phys. Chem. A*, 2010, **114**, 3355-3370.
- 25. Z. Zhou, M. Xie, Z. Wang and F. Qi, *Rapid Commun. Mass Spectrom.*, 2009, 23, 3994-4002.