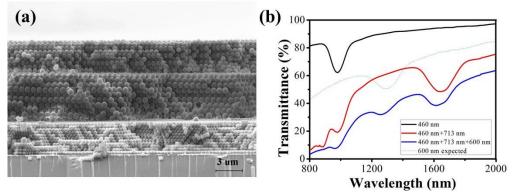
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supporting Information

Tunable Reflectance of Inverse Opal-Chiral nematic Liquid Crystal-Multilayer Device by Electric-/Thermal-Control


Yuxian Zhang,^a Weidong Zhao,^a Jiahui Wen,^a Jinming Li,^a Zhou Yang,^{*a} Dong Wang,^{a*} Hui Cao,^a and Maohua Quan^b

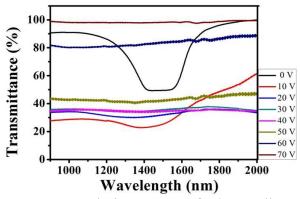
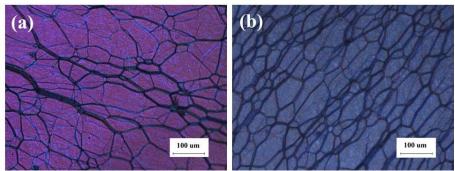
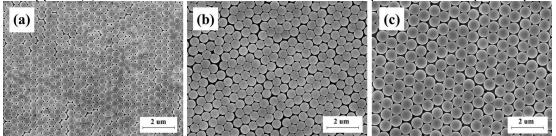
a Department of Materials Science and Engineering, University of Science and Technology Beijing, 100083, China

b Institute for Advanced Materials and Technology, University of Science and Technology Beijing, 100083, China.

*Corresponding authors:

E-mail Address: yangz@ustb.edu.cn (Z. Yang), wangdong@ustb.edu.cn (D. Wang)

Fig. S1 (a) SEM image of trilayer opal and (b) transmission spectra measured during the process of layer-by-layer assembly of trilayer opal. The trilayer opal was fabricated from PS spheres of 460 nm-713 nm-600 nm (460 nm at the bottom and 600 nm on the top).

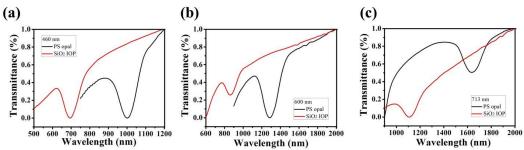

Fig. S2 Transmission spectra of N*LC-cell applied with electric field.

Fig. S3 POM images of monolayer-IOP-N*LC (a) at initial state when the electric field was not applied (a) after the electric-field was removed and a pressure was imposed upon the cell.

Fig. S4 SEM images of monolayer opals fabricated from PS spheres with different diameters (a) 460 nm (b) 600 nm (c) 713 nm.

Fig. S5 Transmission spectra of monolayer SiO₂ IOP compared with corresponding monolayer PS opal.



Fig. S6 DSC of N*LC heating and cooling traces at 10 °C min⁻¹.