Supporting Information

High-performance gas sensors based on a thiocyanate iondoped organometal halide perovskite

Yue Zhuang, Wenjing Yuan, Liu Qian, Shan Chen and Gaoquan Shi*

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of

China

*Corresponding authors, E-mail:gshi@tsinghua.edu.cn

Fig. S1 SEM image of a $CH_3NH_3PbI_{3-x}(SCN)_x$ film prepared by using the DMSO solution of $Pb(SCN)_2$.

Fig. S2 Raman spectra of $Pb(SCN)_2$ and $CH_3NH_3PbI_{3-x}(SCN)_x$ films.

Fig. S3 XPS survey scan spectra of a $CH_3NH_3PbI_{3-x}(SCN)_x$ film; the inset shows the experimental data (blue) and fitted curve (red) of S 2p XPS spectrum.

Fig. S4 Schematic diagram of the gas sensing set-up.

Fig. S5 AFM images with height profiles for the SCN-OHP sensing films prepared by using the DMF solutions of $Pb(SCN)_2$ with different concentrations: (a) 100, (b) 300, and (c) 500 mg mL⁻¹.

Fig. S6 AFM images of the SCN-OHP sensing films prepared by using the DMF solutions of $Pb(SCN)_2$ with different concentrations: (a) 100, (b) 300, and (c) 500 mg mL⁻¹.

Fig. S7 Reponses of the CH₃NH₃PbI₃-based sensor upon exposing to acetone vapours with concentrations ranging from 50 to 5000 ppm.

Fig. S8 (a) Reponses of sensor₁₂₀ upon exposing to ethanol vapors with concentrations ranging from 200 to 2000 ppm. (b) Response variation of the sensor₁₂₀ as a function of ethanol vapor concentration.

Fig. S9 Responses of $CH_3NH_3PbI_3$ -based sensor upon the exposure to 1 ppm NO_2 during three successive cycles.

Fig. S10 Stability test of $CH_3NH_3PbI_3$ -based sensor in the air with 30%–60% relative humidity at room temperature; target gas = 5 ppm NO₂.

.