Supporting Information Ionic Behavior of Organic-Inorganic Metal Halide Perovskite Based Metal-Oxide-Semiconductor Capacitors

Yucheng Wang¹, Renxu Jia^{1,*}, Tiqiang Pang¹, Jie Xu², Ziyang Hu^{2*}, Yuejin Zhu², Xiaoyan Tang¹, Suzhen Luan¹ and Yuming Zhang¹

¹School of Microelectronics, Xidian University, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi'an 710071, China

²Department of Microelectronic Science and Engineering, Ningbo Collabrative Innovation Center of Nonlinear Harzard System of Ocean and Atmosphere, Ningbo University, Ningbo, 315211, China

*These authors contributed equally to this work. Correspondence and requests for materials should be addressed to Renxu Jia. (email: rxjia@mail.xidian.edu.cn)

Model S1:

The value of the total capacitance can be calculated by Eq. SI-5, where A is the electrode area (1600×400µm²), ε is the dielectric constant, which is 3.9 for SiO₂¹, and 11.7 for Si¹, d is the thickness of SiO₂ (150nm), Φ_{fn} is the Fermi potential of Si, N_d is the doping concentration of Si (1×10¹⁹cm⁻³), V_T is the thermal voltage (0.0259eV)¹ and n_i is the intrinsic carrier concentration (1.5×10¹⁰cm⁻³)¹. The value of C_{SiO2} is 148pF by Eq. S2, while the value of C_{SiO2} (148pF) under low frequency (ε_{PVK} is so large that $I/(C_{it}+C_D)$ can be ignored), and under high frequency (ε_{PVK} =32)² is about 110 pF. The 'else' capacitance contains parasitic capacitance and/or capacitance affected by noise or testing error.

$$\frac{1}{C_{\text{total}}} = \frac{1}{C_{Si}} + \frac{1}{C_{Si02}} + \frac{1}{C_{\text{it}} + C_{D}} + \text{else}$$
(Eq. S1)

$$C_{Si02} = \frac{A\varepsilon_{Si02}}{d}$$
(Eq. S2)
$$C_{Sinin} = \frac{\varepsilon_{Si}A}{d}$$
(Eq. S3)

$$\begin{array}{c} x_{\rm dt} \\ \left(4\varepsilon_{\rm c}\phi_{\rm c}\right)^{0.5} \end{array} \end{array}$$

$$\mathbf{x}_{dt} = \left(\frac{N_{SI} \varphi_{Jh}}{eN_d}\right) \tag{Eq. S4}$$

$$\phi_{fn} = V_T \ln(\frac{N_d}{ni}) \tag{Eq. S5}$$

Figure S1. electrical model of Au/CH₃NH₃PbI_{3-x}Cl_x /SiO₂/Si/Al capacitor

Figure S2. Band diagram of p type Metal-Oxide-Semiconductor capacitors with no gate voltage applied. Φ_m is the work function of the metal, χ is the electron affinity of the semiconductor, E_g is the energy band of PVK, and Φ_f is the Fermi potential.

Fig. S2 gives the band diagram of p type MOS capacitors without gate voltage applied. The metal (Al)-semiconductor (PVK) work function difference can be calculated by Eq. 1. After positive voltage is applied, the depletion width (X_d) will enlarge with the increase of the voltage. Thus the depletion capacitance (C_D) is reduced, and the total capacitance (C_{total}) is reduced according to Eq. S1. In this way, the minimum total capacitance appears when the depletion capacitance reaches its minimum value, which is the maximum of the depletion width (X_{dt}). Then the voltage when the capacitance reaches its minimum (V_{cmin}) is the sum of gate oxide voltage (eBX_{dt}/C_{ox}), the metal (Al)-semiconductor (PVK) work function difference (Φ_{ms}), and the surface potential (2 Φ_{f}).

References:

(1) D. A. Neaman. Semiconductor physics and devices, Chicago: Irwin, 1992.

(2) H. S. Jung and N. G. Park, small 2015, 11, 10-25.