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1 Experimental setup
Figure S1 shows the experimental setup in the hutch of the beamline ID02. The observation head of the stopped-flow device is equipped
with a cuvette. Perpendicular to the X-Ray beam a light source and a spectrophotometer are used to acquire UV-Vis absorbance spectra.

Fig. S1 Experimental setup in the experimental hutch of the beamline ID02.
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2. SCATTERING LENGTH DENSITIES AND LENGTH OF THE LIGAND

2 Scattering length densities and length of the ligand
The scattering length density of the MUA shell can be estimated based on the volume v of a hydrocarbon chain which is given according
to:1

v[Å
3
] = 27.4+26.9 ·nc (1)

with nc being the number of CH2 groups.
The resulting scattering length density ρ of the shell as well as the one of gold and water are listed in table 1.

Table 1 Mass densities and X-Ray scattering length densities ρ at 11.5 keV of H2O, Au and the MUA shell.

Material Mass densities [g cm−3] ρ [cm−2] ∆ρ [cm−2]
H2O 1.0 9.44×1010 —
Au 19.3 1.15×1012 1.06×1012

MUA 1.03 9.63×1010 1.92×109

The length of the ligand l was calculated according to:1

l[Å] = 1.5+1.265 ·nc (2)

with nc being the number of CH2 groups. The length of the fully stretched ligand is roughly 1.5 nm.

3 Analysis of the low q regime of the SAXS profiles of the salt free particle dispersion
Figure S2A shows the SAXS profile of the salt free AuNP dispersion. In addition, a fit to the model of polydisperse homogeneous spheres
and a sum of polydisperse spheres and a dimer of two spheres in close contact is shown. The model taking into account the dimers
describes the scattering profile slightly better at low q. The number fraction of gold nanoparticles present in dimers is found to be
7%. The relatively high residuals in Figure S2B at 0.3−1nm−1 occur due to merging of scattering profiles from two different detector
positions.
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Fig. S2 SAXS profile of a dilute AuNP dispersion in H2O. The error bars are smaller than the symbol size and are not included for clarity. The solid
blue line represents a fit by the model of polydisperse homogeneous spheres, whereas the green solid line is a fit using the sum of polydisperse
homogeneous spheres and a dimer of two spheres in close contact. The fit for the sum of dimers and single spheres is multiplied by a factor of 10 (A).
Residuals of the shown fits (B).

4 Structure factor determination
The macroscopic scattering cross-section is given by:

dΣ

dΩ
= N ·V 2 ·∆ρ

2 ·P(q) ·S(q) (3)

with N being the particle number density, V the volume of the scattering object, ∆ρ the scattering length density between particle and
solvent, P(q) the form factor of the particle and S(q) the structure factor.

By measuring a dilute dispersion of AuNPs the experimental form factor P(q) of the particles is available (S(q)→ 1). In contrast for
dispersions of AuNP clusters, the structure factor affects the scattering profile and needs to be considered. The experimentally obtained
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4. STRUCTURE FACTOR DETERMINATION

form factor P(q) from measurements of a dilute sample (solid lines) and the scattering profile of the clusters (symbols) are shown in
direct comparison in Fig. S3. At high q the form factor and the scattering profiles of the clusters overlap nicely, whereas a significant
difference is visible at low q. This difference is related to the structure factor of the clusters. By scaling the high q region of P(q) to the
measured scattering profiles an effective structure factor S(q) can be determined:

S(q) =
dΣ

dΩ

N ·V 2∆ρ2 ·P(q)
(4)

The resulting effective structure factor is shown in the main manuscript in Figure 4D.
The position qmax of the first maximum of S(q) is related to the most probable inter-particle distance dc−c by:

dc−c =
2π

qmax
(5)

The structure factors S(q) in Figure 4D show an upturn at low q as well as two oscillations at high q. We empirically explain these
features by a superposition of a hard-sphere form factor as well as the form factor of a fractal object. Figure S4A shows the theoretical
hard sphere and fractal structure factors. Figure S4B shows a superposition of both structure factors, showing the same trend as the
experimental structure factors.
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Fig. S3 Scattering profiles of AuNP clusters at low q for c(KCl) = 0.150 and 1.0 M. The drawn through lines represent the measurement of the dilute,
non-aggregated particles scaled to the scattering profiles of the clusters. The profile at a salt concentration of 1.0 M is multiplied by a factor of 20 and
the error bars are neglected for clearer representation.
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Fig. S4 Theoretical structure factor S(q) for hard spheres (hard sphere repulsion radius of 5.0 nm and volume fraction of 0.4) and mass fractals
(characteristic size of the individual scatters 5.0 nm, size of the fractal aggregate 200 nm and a fractal dimension of 2.0) (A). Superposition of the
structure factors shown in (A) (B).

3



5. 3D PLOT OF TR-SAXS DATA

5 3D plot of TR-SAXS data
Figure S5 shows an exemplary 3D plot of one SAXS dataset acquired at a KCl concentration of 0.325 mol L−1.

Fig. S5 3D plot of one SAXS dataset at 0.325 mol L−1 KCl.
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REFERENCES 6. RANDOM WALK SIMULATION

6 Random walk simulation
The clusters were built using a self-avoiding random walk using a Python script. The first particle was set to the cartesian coordinate
(0,0,0). For a given inter-particle spacing dspacing the center-to-center distance dc−c for two particles was calculated:

dc−c = 2 ·R+dspacing (6)

With R being the particle radius.
Consequently, a random number between [0,π] and [0,2π] was generated for the two angles φ and ϑ . R, φ and ϑ define the position of
the second particle in the polar coordinate system. The cartesian coordinates (x, y, z) for the new particle are then given by:

x = d · cos(φ) · sin(ϑ) (7)

y = d · sin(φ) · sin(ϑ) (8)

z = d · sin(ϑ) (9)

This is consequently repeated N times, with N being the total particle number in the cluster.
For self-avoidance the center-to-center distance between a new particle and all old ones must be ≥ dc−c.

Listing 1 shows the used Python code for the self-avoiding random walk simulation.

1 import numpy as np

2 import numpy .ma as ma

3 import random

4 import math

5

6 rvec = np . zeros ([1 ,3])

7 while (( np . s i z e ( rvec ) /3) < N p a r t i c l e s ) :

8 rvec_new = np . zeros ( [3 , ] )

9 the ta = math . rad ians (random . randrange (0 ,180) )

10 sigma = math . rad ians (random . randrange (0 ,360) )

11 rvec_new [0] = np . round ( rvec [−1][0] + d i s t∗math . s i n ( the ta )∗math . cos ( sigma ) ,2)

12 rvec_new [1] = np . round ( rvec [−1][1] + d i s t∗math . s i n ( the ta )∗math . s i n ( sigma ) ,2)

13 rvec_new [2] = np . round ( rvec [−1][2] + d i s t∗math . cos ( the ta ) ,2)

14 r v e c _ d i s t = np . zeros ([ i n t (np . s i z e ( rvec ) /3) ])

15 f o r i in range ( i n t (np . s i z e ( r v e c _ d i s t ) ) ) :

16 r v e c _ d i s t [ i ] = np . l i n a l g . norm( rvec [ i ]−rvec_new )

17

18

19 while (np . amin( r v e c _ d i s t ) < d i s t ) :

20

21 the ta = math . rad ians (random . randrange (0 ,180) )

22 sigma = math . rad ians (random . randrange (0 ,360) )

23 rvec_new [0] = np . round ( rvec [−1][0] + d i s t∗math . s i n ( the ta )∗math . cos ( sigma ) ,2)

24 rvec_new [1] = np . round ( rvec [−1][1] + d i s t∗math . s i n ( the ta )∗math . s i n ( sigma ) ,2)

25 rvec_new [2] = np . round ( rvec [−1][2] + d i s t∗math . cos ( the ta ) ,2)

26

27 r v e c _ d i s t = np . zeros ([ i n t (np . s i z e ( rvec ) /3) ])

28 f o r i in range ( i n t (np . s i z e ( r v e c _ d i s t ) ) ) :

29 r v e c _ d i s t [ i ] = np . l i n a l g . norm( rvec [ i ]−rvec_new )

30 rvec = np . vs tack (( rvec , rvec_new ) )

Listing 1 Python code used for the self-avoiding random walk.
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