Supporting Information

More Accurately Depicting Adsorption Energy on Transition Metal using

Work Function as One Additional Descriptor

Xiaochen Shen ^a, Yanbo Pan ^a, Bin Liu ^b, Jinlong Yang ^c, Jie Zeng ^{c,*}, Zhenmeng Peng ^{a,*}

^a Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325, United States

^b Department of Chemical Engineering, Kansas State University, Manhattan, KS 66506, United States

^c Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum

Matter Physics of Chinese Academy of Sciences, and Department of Chemical Physics, University of Science and

Technology of China, Hefei, Anhui 230026, P. R. China

Corresponding Author

- * zengj@ustc.edu.cn
- * zpeng@uakron.edu

Figure S1. (A) Different adsorption sites on transition metal (111) surface. (B) Side view of the transition metal surface model.

Figure S2. Top view of adsorption model of (A) O, (B) OH, (C) OOH species on transition metal (111) surface. (•: oxygen, •: hydrogen)

Figure S3. $\Delta q - W$ plots and linear correlation for O, OH and OOH adsorption to transition metal (111) surface.

Figure S4. A proportional correlation between Δq and ΔW for O adsorption to transition metals.

Figure S5. A proportional correlation between Δq and ΔW for OH adsorption to transition metals.

Figure S6. A proportional correlation between Δq and ΔW for OOH adsorption to transition metals.

Figure S7. The E_{ionic} – ΔW correlation for O, OH and OOH adsorption to transition metals.

	ε _d /	W/eV	$E_{ads}(O) / eV$	E _{ads} (OH) / eV	E _{ads} (OOH) / eV
Au(111)	-3.55	4.96	-0.62	-2.47	-1.00
Cu(111)	-2.60	4.62	-2.25	-3.58	-2.05
Pd(111)	-2.17	5.20	-1.88	-3.04	-1.72
Pt(111)	-2.78	5.24	-1.58	-2.49	-1.56
Rh(111)	-2.47	4.91	-2.45	-3.59	-2.25
Ag(111)	-4.27	4.26	-1.05	-3.28	-1.72
Ni(111)	-1.66	4.98	-3.08	-3.75	-2.20

Table S1. DFT calculated $\varepsilon_{\rm d}$, *W* and adsorption energies.

		0	ОН	ООН
E _{ionic} –W	k	-0.13	-0.11	-0.29
	W ₀	8.97	8.10	5.99
	R_{adj}^2	0.8524	0.9647	0.9497
$E_{\rm covalent}$ — $\varepsilon_{\rm d}$	slope intercept	-1.23	-0.48	-0.43
		-3.08	-3.36	-2.59
	R_{adj}^2	0.9357	0.5893	0.6747

Table S2. Fitting results of the E_{ionic} -W and the E_{covalent} - ε_{d} relation.

	0	ОН	ООН
Z ₀	-2.29	-2.36	-2.83
а	-1.19	-0.70	-0.60
k	-0.17	-0.26	-0.47
W ₀	8.97	8.10	5.99
R_{adj}^2	0.9059	0.9053	0.7142
$R_{adj}^2 (E_{ads} - \varepsilon_d)^*$	0.6865	0.0116	0.2096

Table S3. Fitting results of the E_{ads} –(ε_d , W) model and E_{ads} – ε_d model.

* $R_{adj}^2(E_{ads}-\varepsilon_d)$ values are for the $E_{ads}-\varepsilon_d$ linear fitting correlation.