Supplementary Information

Ligand-ligand interactions effect on the formation of photoluminescent gold nanoclusters embedded in Au(I)-thiolate supramolecules

Hsiang-Yu Chang,^a Yu-Ting Tseng,^a Zhiqin Yuan,^b Hung-Lung Chou,^{*c} Ching-Hsiang Chen,^d Bing-Joe Hwang,^d Meng-Che Tsai,^d Huan-Tsung Chang^{*aeh} and Chih-Ching Huang^{*fgh}

- ^a Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- ^b State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- ^c Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
- ^d Nanoelectrochemistry Laboratory, Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
- ^e Department of Chemistry, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
- ^fDepartment of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
- ^g Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- ^h School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan

Correspondence: Professor Hung-Lung Chou, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, 43, Section 4, Keelung Road, Taipei 10617, Taiwan. E-mail: HLCHOU@mail.ntust.edu.tw; Professor Huan-Tsung Chang, Department of Chemistry, National Taiwan University, 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan. E-mail: changht@ntu.edu.tw; Professor Chih-Ching Huang, Department of Bioscience and Biotechnology, National Taiwan Ocean University, 2, Beining Road, Keelung 20224, Taiwan. E-mail: huanging@ntou.edu.tw

Sample	Static light scattering (kcps; n = 5)	Zeta potential (mV; n =5)		
A	273.2±32.7	-0.92±4.75		
В	243.2±25.6	-1.14 ± 4.04		
С	250.2±22.3	-4.53±3.70		
D	74.2±18.3	-12.3±2.23		

Table S1 The intensities of static light scattering and zeta potentials of the productsfrom the reactions of $HAuCl_4$ (1.4 mM) with L-cysteine (10 mM) at pH of (A) 3, (B)5, (C) 7, and (D) 9.

sample	λ_{max}^{abs} $(nm)^a$	λ_{max}^{ex} $(nm)^b$	λ_{max}^{em} $(nm)^c$	QY (%)	$\tau(\tau_1/\tau_2, \mathrm{ns})$
Cys–Au NCs _{pH3}	365	355	630	11.6	218.68 (29.05%)/2288.78 (70.95%)
Cys–Au NCs _{pH5}	365	350	630	10.4	44.27 (39.72%)/1876.49 (60.28%)
Cys–Au NCs _{pH7}	365	350	630	10.1	145.07 (32.59%)/2190.04 (67.41%)
-[Cys-Au(I)] _n - _{pH9}	-	-	-	0.21	42.97 (63.51%)/1196.65 (36.49%)

 $\textbf{Table S2} \ Optical \ properties \ of \ as-prepared \ Cys-Au \ NCs_{pH3-7} \ and \ -[Cys-Au(I)]_{\it n-pH9} \, .$

^{*a*}absorption-band maxima at wavelength. ^{*b*}excitation-band maxima at wavelength. ^{*c*}emission-band maxima at wavelength.

Scheme S1 Schematic of aurophilic Au(I)····Au(I) interactions mediated by the interaction between adjacent Cys ligands along the $-[Cys-Au(I)]_n$ - polymeric backbone through controlling solution pH values. Parameters α_1 and α_2 are the Au(I)–S(R)–Au(I) angles at pH \leq 7 and pH > 7, respectively.

Scheme S2 Schematic of a helical structure of the $-[Cys-Au(I)]_n$ polymer.

Scheme S3 Proposed structure of $[Au_{13}Cys_{12}]^+$.

Fig. S1 UV–Vis absorption spectra of the products from the reactions of $HAuCl_4$ (1.4 mM) with L-cysteine (10 mM) for 1 h in solutions with pH at (a) 3, (b) 5, (c) 7, and (d) 9.

Fig. S2 (A) Low-magnification and (B) high-magnification TEM images of the products from the reactions of $HAuCl_4$ (1.4 mM) with L-cysteine (10 mM) for 1 h in solutions at pH (a) 3, (b) 5, (c) 7, and (d) 9.

Fig. S3 Raman spectra of (a) L-Cys and (b) as-prepared $-[Cys-Au(I)]_n$ -supramolecules from the reaction of HAuCl₄ (1.4 mM) with L-cysteine (10 mM) for 1 h in a solution at pH 3.

Fig. S4 Potentiometric titration of (A) cysteine (1.4 mM) and (B) as-prepared $-[Cys-Au(I)]_n$ polymers/supramolecules from the reaction of HAuCl₄ (1.4 mM) with L-cysteine (1.4 mM) for 1 h. The cysteine or $-[Cys-Au(I)]_n$ polymers/supramolecules are titrated by NaOH (100 mM).

Fig. S5 PL decays of as-prepared (a) Cys–Au NCs_{pH3}, (b) Cys–Au NCs_{pH5}, (c) Cys–Au NCs_{pH7}, and (d) –[Cys–Au(I)]_{*n*}–_{pH9} excited with a pulsed laser at 375 nm. Each of them was then fitted to a biexponential PL decay [$I(t) = a_1 \exp(-t/\tau_1) + a_2 \exp(-t/\tau_2)$], providing lifetimes (τ_1/τ_2) for the (a) Cys–Au NCs_{pH3}, (b) Cys–Au NCs_{pH5}, (c) Cys–Au NCs_{pH7}, and (d) –[Cys–Au(I)]_{*n*}–_{pH9} of 218.68 ns (29.05%)/2288.78 ns (70.95%), 44.27 ns (39.72%)/1876.49 ns (60.28%), 145.07 ns (32.59%)/2190.04 ns (67.41%), and 42.97 ns (63.51%)/1196.65 ns (36.49%), respectively.

Fig. S6 Temperature-dependent PL spectra of (A) Cys–Au NCs_{pH3}-, (B) Cys–Au NCs_{pH5}-, and (C) Cys–Au NCs_{pH7}-embedded in $-[Cys-Au(I)]_n$ supramolecules and (D) $-[Cys-Au(I)]_n$ at 80–300 K. The PL intensities (I_{PL}) are plotted in arbitrary units (a. u.). Other conditions were the same as those described in Figure 2.

Fig. S7 $-[Cys-Au(I)]_n$ - supramolecules (pH 3) (A) before and (B) after continuous electron-beam irradiation (200 kV) for 10 s during TEM observation.

Fig S8 XANES spectra of the Au L₃-edge of as-prepared (a) Cys–Au NCs_{pH3}-, (b) Cys–Au NCs_{pH5}-, and (c) Cys–Au NCs_{pH7}-embedded in $-[Cys-Au(I)]_n$ -supramolecules and (d) $-[Cys-Au(I)]_n$ -pH9. Inset: first-derivative spectra of the corresponding samples.

Fig. S9 (A) $k^2\chi(k)$ and the least-squares EXAFS curve-fitting data and (B) Fouriertransformed curves of the $k^2\chi(k)$ functions of the as-prepared (a) Cys–Au NCs_{pH3}-, (b) Cys–Au NCs_{pH5}-, and (c) Cys–Au NCs_{pH7}-embedded in –[Cys–Au(I)]_n– supramolecules and (d) –[Cys–Au(I)]_n–_{pH9}.

Fig. S10 Time-course measurement of PL intensity at 630 nm (I_{PL630}) for $-[Cys-Au(I)]_n$ polymers/supramolecules in solutions with pH at (A) 3, (B) 5, (C) 7, and (D) 9 in the (a) absence or (b) presence of NaBH₄ (0.75 mM).

Fig. S11 (A) UV–Vis absorption and (B) PL spectra excited at 365 nm of (a) Cys–Au NCs_{pH3}, (b) Cys–Au NCs_{pH5}, (c) Cys–Au NCs_{pH7}, and (d) $-[Cys-Au(I)]_n-_{pH9}$ synthesized from the reaction of $-[Cys-Au(I)]_n$ polymers/supramolecules with NaBH₄ (0–3.00 mM) for 24 h.

Fig. S12 TEM images of Cys–Au $NCs_{pH3}/-[Cys-Au(I)]_n$ supramolecules synthesized from the reactions of $-[Cys-Au(I)]_n$ supramolecules for 24 h with NaBH₄ at concentrations of (a) 0 mM, (b) 0.10 mM, (c) 0.38 mM, (d) 0.75 mM, (e) 1.50 mM, and (f) 3.00 mM.

Fig. S13 Structures and ionizations of L-Cys, L-penicillamine, L-homocysteine, 3-mercaptopropionic acid and reduced L-glutathione.

Fig. S14 (a) UV–Vis absorption spectra and (b) PL spectra excited at 365 nm of (i) $-[Cys-Au(I)]_n-$, (ii) $-[penicillamine-Au(I)]_n-$ (iii) $-[homocysteine-Au(I)]_n-$, (iv) $-[3-mercaptopropionic acid-Au(I)]_n-$, and (v) $-[GSH-Au(I)]_n-$ synthesized in solutions at pH 3 (A) before and (B) after reaction with NaBH₄ (0.75 mM) for 24 h.

Fig. S15 (a) UV–Vis absorption spectra and (b) PL spectra excited at 365 nm of (i) $-[Cys-Au(I)]_n-$, (ii) $-[penicillamine-Au(I)]_n-$ (iii) $-[homocysteine-Au(I)]_n-$, (iv) $-[3-mercaptopropionic acid-Au(I)]_n-$, and (v) $-[GSH-Au(I)]_n-$ synthesized in solutions at pH 5: (A) before and (B) after reaction with NaBH₄ (0.75 mM) for 24 h.

Fig. S16 (a) UV–Vis absorption spectra and (b) PL spectra excited at 365 nm of (i) $-[Cys-Au(I)]_n-$, (ii) $-[penicillamine-Au(I)]_n-$ (iii) $-[homocysteine-Au(I)]_n-$, (iv) $-[3-mercaptopropionic acid-Au(I)]_n-$, and (v) $-[GSH-Au(I)]_n-$ synthesized in solutions at pH 7: (A) before and (B) after reaction with NaBH₄ (0.75 mM) for 24 h.

Fig. S17 (a) UV–Vis absorption spectra and (b) PL spectra excited at 365 nm of (i) $-[Cys-Au(I)]_n-$, (ii) $-[penicillamine-Au(I)]_n-$ (iii) $-[homocysteine-Au(I)]_n-$, (iv) $-[3-mercaptopropionic acid-Au(I)]_n-$, and (v) $-[GSH-Au(I)]_n-$ synthesized in solutions at pH 9: (A) before and (B) after reaction with NaBH₄ (0.75 mM) for 24 h.