Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Electronic Supplementary Information (ESI) for Physical Chemistry Chemical Physics

Supporting Information

Mechanistic Origin of Low Polarization in Aprotic Na-O₂ Batteries

Shunchao Ma,^{a,b} William C. McKee,^c Jiawei Wang,^a Limin Guo,^a Martin Jansen,^d Ye Xu,^{c,*} and Zhangquan Peng^{a,*}

^aState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China

^bUniversity of Chinese Academy of Sciences, Beijing 100039, P. R. China

^cDepartment of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, USA

^dMax Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany

*E-mail: zqpeng@ciac.ac.cn, yexu@lsu.edu

Additional experimental methods

UV-Vis spectroscopy.

UV-Vis spectroscopy (UV-2600, SHIMADZU) was carried out to determine the K_{sp} of NaO₂ in DMSO. To measure K_{sp} , the molar absorption coefficient (ϵ) of O₂⁻ in DMSO was first determined. Briefly, stock solutions of 0.1, 0.3 and 0.6 mM TMAO₂ DMSO were prepared in an Ar filled glove box. UV-Vis spectra of the stock solutions with known O₂⁻ concentration were collected and used to determine the ϵ (Figure S3a) based on the Lambert-Beer law. The K_{sp} of NaO₂ in DMSO was then obtained by measuring the UV-Vis spectrum of diluted solutions of NaO₂-saturated DMSO (Figure S3b). The concentration (C₁) of NaO₂-saturated DMSO was calculated based on the acquired ϵ (Figure S3a) and the absorbance of 100 times diluted solution Figure S3b. Thus, C₁ (saturated-NaO₂) =100×C (diluted-100) =100×0.266×10⁻³ mol/L =2.66×10⁻² mol/L. Similarly, C₂ (saturated-NaO₂)=50×C (diluted-50)=50×0.578×10⁻³ mol/L=2.98×10⁻² mol/L. Since the values of NaO₂-saturated C₁ and C₂ were close, the K_{sp} of NaO₂ in DMSO was $K_{sp} = [(2.66×10⁻²+2.98×10⁻²)/2]^2 = 7.95×10⁻⁴.$

Figure S1. SERS spectra collected on an Au electrode polarized at 1.94 V (*vs.* Na/Na⁺) in an O_2 saturated 0.1 M NaClO₄ DMSO solution as a function of time.

Figure S2. CVs on an Au electrode in O_2 saturated 0.1 M NaClO₄ DMSO. Scan rates are from 0.5 to 10 mV/s. The reversibility of the redox of O_2/O_2^- at low scan rates suggests that the O_2^- generated by ORR is highly stable or has long lifetime in the presence of 0.1 M Na⁺, and that the reaction rate constant of O_2^- and Na⁺ forming solid NaO₂ is small.

Figure S3. (a) UV-Vis spectra of DMSO containing various concentrations of TMAO₂, inset shows the absorbance at 262 nm as a function of $[O_2^{-1}]$. (b) UV-Vis spectra of (red) 50 and (blue) 100 times diluted solutions of NaO₂-saturated DMSO.

Figure S4. (a) Discharging curve of an Au electrode in an O₂ saturated 0.1 M NaClO₄ DMSO at a current density of 318 μ A/cm² to the state of "sudden death" with the cathodic cut-off potential of 1.55 V. (b) SERS spectrum collected at the end of discharge showing that the Au surface is dominated with NaO₂.

Figure S5. (a) Discharging curve of an Au electrode in O_2 saturated 0.1 M TBAClO₄ DMSO at a current density of 318 μ A/cm² with the cathodic cut-off potential of 1.55 V. (b) LSV curves of the Au electrode immediately after discharging (black line) and after 5 minutes resting time (red line). Scan rate is 10 mV/s. The disappearance of the oxidation peak after resting indicates that 5 minutes are enough for the free O_2^- to diffuse into bulk electrolyte solution.

Figure S6. Raman spectra of (black) cryo-synthesized NaO_2 and (red) NaO_2 prepared by reaction of KO_2 and $NaClO_4$ in DMSO. The Raman signature for NaO_2 differs from that observed for NaO_2 on Au by *in situ* SERS by 10 cm⁻¹ due to substrate effects.

Table S1 DFT total-energy adsorption energy (ΔE , in eV), O-O stretching frequency (v_{0-0} , in cm⁻¹), bond length (d_{0-0} , in Å), Bader charge (in electrons), and static surface dipole moment (μ_0 , in eÅ) at zero field, of molecular O₂, NaO₂, and Na₂O₂ adsorbed at Au|DMSO interfaces.

	ΔE	V ₀₋₀	<i>d</i> ₀₋₀	Charge	μ_0
O ₂ /Au ₁ /Au(111)	+0.83	1175	1.300	-0.39	+0.96
NaO ₂ /Au(211)	-2.00	762	1.450	-0.99	-0.92
Na ₂ O ₂ /Au(211)	-3.35	705	1.515	-1.24	-1.32

Results were obtained at the 700 eV cutoff energy level. Adsorption energies were referenced to the respective Au|DMSO interface and each adsorbate as a neutral molecule in the gas phase. See Figure 4 for snapshots of these surface species. The vibrational calculations to determine v_{0-0} involved relaxing the Na and O_2 group only, and also the Au adatom in the case of O_2/Au_1 . The average interfacial electric field (ϵ) was taken to be 0.3 V/Å; see Ref. S1 for more details about μ_0 and ϵ .

Species	∆G° _f *	ΔG° _{sol}
Na ⁺ (g)	+5.95	-4.64 #
O ₂ -(g)	-0.45	-2.81 ⁺
NaO _{2(s)}	-2.27	n/a

Table S2. Literature values of the standard-state free energies of formation (ΔG°_{f} , in eV), and the standard-state free energies of solvation in DMSO (ΔG°_{sol} , in eV).

*Taken from the NIST-JANAF Thermochemical Tables.

[#]Ref. S2; [†]Ref. S3

Refs. S2 and S3 reported ΔG^*_{sol} , where the standardstate concentration for both gas- and solution-phase Na⁺ and O₂⁻ are taken to be 1 M (i.e., 1 mol per liter of space or solution). These values have been converted to ΔG°_{sol} , where the standard-state concentrations for the gas- and solution-phase ions are 1 mol at 1 atm, and 1 M, respectively, by adding 0.082 eV.

References

- S1 S. H. Rawal, W. C. McKee and Y. Xu, to be submitted.
- S2 C. P. Kelly, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B, 2007, 111, 408-422.
- S3 D. G. Kwabi, V. S. Bryantsev, T. P. Batcho, D. M. Itkis, C. V. Thompson and Y. Shao-Horn, Angew. Chem. 2016, **128**, 3181-3186.