Electronic supplementary information

Cation distribution a key to ascertain the magnetic interactions in cobalt substituted $\mathbf{M g}-\mathrm{Mn}$ nanoferrite matrix

Gagan Kumar, R. K. Kotnala, Jyoti Shah, Vijay Kumar, Arun Kumar, Pooja Dhiman, and M. Singh

The X-ray intensity for different planes ($\left.I_{\text {kkl }}\right)$ for powder specimen was calculated by using following relation:

$$
\begin{equation*}
I_{\mathrm{h} k l}=|F|_{\mathrm{h} k l}^{2} \cdot P \cdot L_{p} \tag{S1}
\end{equation*}
$$

where F is structure factor, P is multiplicity factor and L_{p} is Lorentz polarization factor. The Lorentz polarization factor was calculated by using the following relation:

$$
\begin{gathered}
L_{p}=\left(\frac{1+\cos ^{2} 2 \theta}{\sin ^{2} \theta \cos \theta}\right) \\
\left(M g_{0.9-x} M n_{0.1-y} \operatorname{Co}_{z-\delta} F e_{1-\delta}\right)_{A}\left[M g_{x} M n_{y} \operatorname{Co}_{\delta} F e_{1-z+\delta]_{B} O_{4}}\right. \\
r_{B}=\left[C_{A M g} r\left(M g^{2+}\right)+C_{A M n} r\left(M n^{2+}\right)+C_{A F e} r\left(F e^{3+}\right)+C_{A C o} r\left(C_{B M}{ }^{2+}\right)\right] \\
T=\frac{1}{\sqrt{3}}\left(\frac{r_{A}+R_{o}}{r_{B}+R_{o}}\right)+\frac{1}{\sqrt{2}}\left(\frac{R_{o}}{r_{A}+R_{o}}\right) \\
a_{t h}=(8 / 3 \sqrt{3})\left[\left(r_{A}+R_{o}\right)+\sqrt{3}\left(r_{B}+R_{o}\right)\right] \\
u^{3 m}= \\
\left.\frac{\frac{1}{4} R^{2}-\frac{2}{3}+\sqrt{\left(\frac{11}{48} R^{2}-\frac{1}{18}\right)}}{2 R^{2}-2} r\left(M n^{2+}\right)+C_{B F e} r\left(F e^{3+}\right)+C_{B C o} r\left(C o^{2+}\right)\right] \\
u^{43 m}=\frac{\frac{1}{2} R^{2}-\frac{11}{12}+\sqrt{\left(\frac{11}{48} R^{2}-\frac{1}{18}\right)}}{2 R^{2}-2} \\
u^{43 m}=\left[\frac{1}{a_{t h} \sqrt{3}}\left(r_{A}+R_{o}\right)+\frac{1}{4}\right]
\end{gathered}
$$

$$
\text { where } R=\frac{(B-O)}{(A-O)}
$$

The bond lengths $B-O$ and $A-O$ are average bond lengths calculated based on the cation distribution; where $B-O=\left\langle r_{B}+R_{o}\right\rangle$ and $A^{-} O=\left\langle r_{A}+R_{o}\right\rangle$.

$$
\begin{equation*}
d_{A X}=a \sqrt{3}\left(U-\frac{1}{4}\right) \tag{S11}
\end{equation*}
$$

$$
\begin{align*}
& d_{B X}=a\left[3 U^{2}-\left(\frac{11}{4}\right) U+\frac{43}{64}\right]^{1 / 2} \tag{S12}\\
& d_{A X E}=a \sqrt{2}\left(2 U-\frac{1}{2}\right) \tag{S13}\\
& d_{B X E}=a \sqrt{2}(1-2 U) \tag{S14}\\
& \quad d_{B X E U}=a\left(4 U^{2}-3 U+\frac{11}{16}\right) \tag{S15}
\end{align*}
$$

