Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2017

Supporting Information

Relationship between the cycle performance and electronic structure in LiAl_xMn_{2-x}O₄ (x = 0 and 0.2) as seen via soft X-ray spectroscopy

Daisuke Asakura1*, Yusuke Nanba1#, Yuki Makinose, Hirofumi Matsuda and Eiji Hosono1*

¹Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan

* Corresponding authors: Daisuke Asakura, Eiji Hosono

Email address: <u>daisuke-asakura@aist.go.jp</u>, <u>e-hosono@aist.go.jp</u> Tel: +81-29-861-3489, Fax: +81-29-861-3489,

Address: Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan

Present Address

[#]Yusuke Nanba: Inamori Frontier Research Center, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan

XRD patterns and calculated lattice parameters

Figure S1 shows the *ex situ* XRD patterns for LiMn₂O₄ (LMO) and LiAl_{0.2}Mn_{1.8}O₄ (LAMO). The synchrotron radiation (SR) measurements for LAMO were carried out at BL19B2, SPring-8. The wavelength λ of X-rays was set to 0.501 Å. On the other hand, Bruker D8 Advance with a Cu K α X-ray was used for XRD measurements of LMO. We calculated the lattice parameters using the indexes of LMO with a cubic symmetry (Fig. S2). They correspond to Table 1 in the text.

Fig. S1 XRD patterns for (a) LMO and (b) LAMO.

Fig. S2 Calculated lattice parameters.