This journal is © the Owner Societies 2017

High Resolution Mass Spectrometry (HRMS)

Figure S1. HRMS of mFI-Cb-H.

Figure S2. HRMS of mFl-Cb-Ph.

Figure S3. HRMS of DmFI-Cb.

Figure S5. HRMS of $\mathbf{p F I}-\mathrm{Cb}-\mathrm{Ph}$.

Table S1. Structural refinement data of crystals

	mFl-Cb-Ph*	DmFl-Cb ${ }^{\text {\& }}$	pFl-Cb- $\mathrm{H}^{\text {\# }}$
CCDC number	1527646	1527647	1536124
Formula	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~B}_{10}$	$\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~B}_{10}$	$\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~B}_{10}$
Crystal system	triclinic	triclinic	tetragonal
Space group	P-1	P-1	141/a
a, \AA	10.2378(4)	10.7377(4)	29.1255(9)
b, Å	10.7582(5)	15.4048(6)	29.1255(9)
c, \AA A	11.6502(6)	18.3711(7)	14.6448(5)
$\alpha\left({ }^{\circ}\right)$	90.007(2)	90.481(2)	90.00
$\beta\left({ }^{\circ}\right)$	102.099(2)	97.830(2)	90.00
$Y\left({ }^{\circ}\right)$	110.257(2)	91.483(2)	90.00
V, \AA^{3}	1173.35(9)	3009.3(2)	12423.1(7)
$\rho / \mathrm{g} . \mathrm{cm}^{-3}$	1.168	1.167	0.985
z	2	4	16
$\mu\left(\mathrm{mm}^{-1}\right)$	0.059	0.061	0.051
F(000)	432.0	1112.0	3839
R1(reflections)	0.0668	0.0489	0.0890
wR2(reflections)	0.1491	0.1145	0.3329
GOOF	0.939	0.994	0.826

* Crystals of mFI-Cb-Ph were grown from slow evaporation of ethanol solution
\& Crystals of DmFI-Cb were grown from a hot methanol/ethanol (1:1) solution
\# Crystals of pFI-Cb-H were grown from a saturated chloroform solution. Disordered lattice solvent molecules could not be modelled (even at 120 K) and were therefore removed from the refinement using PLATON SQUEEZE ${ }^{1}$. The molecular structure of $\mathbf{p F I - C b}-\mathrm{H}$ was confirmed despite the poor diffraction data.

Figure S6. Crystal packing of mFI-Cb-Ph.

Figure S7. Crystal packing of DmFI-Cb including both cis- and trans- (gray) conformers.

Figure S8. Unit cell of pFI-Cb-H. Hydrogens have been omitted for clarity.

Figure S9. Emission spectra (excitation at 300 nm) of $\mathrm{Fl}-\mathrm{Cb}$ analogues in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (left) and $\mathrm{CH}_{3} \mathrm{CN}$ (right). The quantum efficiency is around 0.1\%.

Figure S10. Absorption and emission spectra (excitation at 350 nm) of quinine sulfate solution and DmFl-Cb aggregates (10-5 $\mathrm{mol} / \mathrm{L})$ in $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(4: 6)$ solution. The quantum yield was estimated using quinine sulfate as a standard ($\Phi=0.55$).

Figure S11. PL decay of the solid $\mathrm{Fl}-\mathrm{Cb}$ analogues, $\mathbf{m F l}-\mathrm{Cb}-\mathrm{Ph}(\mathrm{a}), \mathrm{DmFI}-\mathrm{Cb}(\mathrm{b})$ and $\mathrm{pFI}-\mathrm{Cb}-\mathrm{Ph}(\mathrm{c})$.

Figure S12. Simulated infrared spectrum of mFl-Cb-Ph. Selected vibrations relative to the aggregation are shown in colored arrows.

Figure S13. Calculated oscillator strengths (f) of electronic transitions from different excited states $\left(S_{1}\right)$ to the ground state $\left(S_{0}\right)$ of the mFI-Cb-Ph monomer. Excited-state structures were obtained by TD-DFT optimization varying the cage C-C bond lengths from $1.75 \AA$ to 2.30 Å.

Table S2. Calculated electronic transitions of mFl-Cb-Ph from the ground state to the lowest five excited states for different aggregations.

261.52	1.0051	$\mathrm{H}-1 \rightarrow \mathrm{~L}$ (47.7\%); H \rightarrow L+1 (46.3\%)
246.04	0.0000	
245.68	0.1030	$\mathrm{H}-5 \rightarrow \mathrm{~L}(14.7 \%) ; \mathrm{H}-4 \rightarrow \mathrm{~L}+1$ (14.7\%); $\mathrm{H}-1 \rightarrow \mathrm{~L}+4$ (20\%); $\mathrm{H}-1 \rightarrow \mathrm{~L}+7$ (7\%); H \rightarrow L+5 (19\%); $\mathrm{H} \rightarrow \mathrm{L}+6$ (19\%)
240.85	0.0000	
	mFl-Cb-Ph dimer-Ph	
$\lambda_{\text {calc }}$	f	Assignment (> 5\%)
(nm)		
262.63	1.3438	$\mathrm{H}-1 \rightarrow \mathrm{~L}$ (47.9\%); H \rightarrow L+1 (49.4\%)
261.30	0.0001	
245.26	0.1224	$H-9 \rightarrow L+1$ (6.9\%); H-8 \rightarrow L (7.2\%); H-6 \rightarrow L+1 (11.6\%); H-5 \rightarrow (10.2%); $\mathrm{H}-1 \rightarrow \mathrm{~L}+4$ (25\%); $\mathrm{H} \rightarrow \mathrm{L}+5$ (24.6 \%)
245.14	0.0000	
239.91	0.0002	
mFl-Cb-Ph trimer		
$\lambda_{\text {calc }}$	f	Assignment (>5\%)
(nm)		
266.83	0.0081	
262.35	1.6397	$\mathrm{H}-2 \rightarrow \mathrm{~L}$ (65.8\%); $\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (20.4\%); $\mathrm{H} \rightarrow \mathrm{L}+2$ (13.7\%)
261.09	0.1306	$\mathrm{H}-2 \rightarrow \mathrm{~L}$ (35.1\%); $\mathrm{H}-1 \rightarrow \mathrm{~L}+1$ (29.8\%); $\mathrm{H} \rightarrow \mathrm{L}+2$ (35.2\%)
245.98	0.0001	
245.62	0.1169	$\mathrm{H}-8 \rightarrow \mathrm{~L}+1$ (13.2\%); $\mathrm{H}-6 \rightarrow \mathrm{~L}+2$ (15.4\%); $\mathrm{H}-1 \rightarrow \mathrm{~L}+6$ (20.5\%); $\mathrm{H}-1 \rightarrow \mathrm{~L}+9$ (7.1\%); $\mathrm{H} \rightarrow \mathrm{L}+8$ (27.9\%)
$\mathrm{mFI}-\mathrm{Cb}-\mathrm{Ph}$ tetramer		
$\lambda_{\text {calc }}$	f	Assignment (> 5\%)
(nm)		
266.97	0.0156	$\mathrm{H}-3 \rightarrow \mathrm{~L}(16.1 \%) ; \mathrm{H}-3 \rightarrow \mathrm{~L}+1$ (5.9\%); H-2 \rightarrow L (5.9\%); H-2 \rightarrow L+1 (16.2\%); H-1 \rightarrow L+2 (27.5\%); $\mathrm{H} \rightarrow \mathrm{L}+3$ (28.4\%)
266.66	0.0000	
262.05	2.2075	$\mathrm{H}-3 \rightarrow \mathrm{~L}$ (20.2\%); $\mathrm{H}-3 \rightarrow \mathrm{~L}+1$ (7.4\%); $\mathrm{H}-2 \rightarrow \mathrm{~L}$ (7.4\%); $\mathrm{H}-2 \rightarrow \mathrm{~L}+1$ (20.2\%); $\mathrm{H}-1 \rightarrow \mathrm{~L}+2$ (22\%); $\mathrm{H} \rightarrow \mathrm{L}+3$ (22.8\%)
260.96	0.0000	
245.97	0.0001	

Table S3. Calculated electronic transitions of cis-DmFI-Cb tetramer from the ground state to the lowest five excited states.

$\lambda_{\text {calc }}(\mathrm{nm}$	f	Assignment (> 4\%)
)		
271.86	0.7101	$\mathrm{H}-7 \rightarrow \mathrm{~L}(12.2 \%) ; \mathrm{H}-6 \rightarrow \mathrm{~L}+1$ (7\%); H-6 \rightarrow L+3 (4.2\%); H-5 \rightarrow L (17.9\%); H-5 \rightarrow L+2 (5.7\%); H-5 \rightarrow L+4 (10.2\%); H-4 \rightarrow
		L+1 (5.2\%); H-4 \rightarrow L+3 (6.5\%); $\mathrm{H}-4 \rightarrow \mathrm{~L}+5$ (11\%); H-4 \rightarrow L+7 (4.4\%); H-1 \rightarrow L (4.4\%); H-1 \rightarrow L+4 (4.8\%); H \rightarrow L+1 (6.6\%)
269.53	0.0000	
269.39	0.7311	$\mathrm{H}-7 \rightarrow \mathrm{~L}+2$ (6.6\%); H-6 \rightarrow L+3 (4.9\%); H-3 \rightarrow L+2 (10.4\%); H-3 \rightarrow L+6 (8.2\%); H-2 \rightarrow L+3 (8.5\%); H-2 \rightarrow L+5 (5.4\%);
		$\mathrm{H}-2 \rightarrow \mathrm{~L}+7$ (5.2\%); $\mathrm{H}-1 \rightarrow \mathrm{~L}+2$ (7.4\%); H-1 \rightarrow L+6 (6.6\%); H \rightarrow L+1 (6.7\%); H \rightarrow L+7 (4.8\%)

268.25	0.0000
262.65	0.0000

Table S4. Selected energy levels of mFI-Cb-Ph for different
Table S5. Selected energy levels of cis-DmFI-Cb
aggregations.

	monomer	dimer-FI	dimer-Ph	trimer	tetramer
$\mathbf{L + 3}$	1.483	0.973	1.091	0.979	0.467
$\mathbf{L + 2}$	1.161	0.954	1.003	0.463	0.452
$\mathbf{L + 1}$	0.910	0.396	0.390	0.410	0.410
\mathbf{L}	0.309	0.387	0.378	0.380	0.410
\mathbf{H}	-8.030	-7.897	-7.960	-7.839	-7.842
$\mathbf{H - 1}$	-8.863	-7.903	-7.965	-7.883	-7.846
$\mathbf{H - 2}$	-9.089	-8.693	-8.800	-7.968	-7.882
$\mathbf{H - 3}$	-9.204	-8.709	-8.801	-8.645	-7.882

for different aggregations.

	monomer	dimer	tetramer
L+7	2.137454	1.328732	0.421232
L+6	1.989696	1.31431	0.412797
L+5	1.918947	1.237029	0.376333
L+4	1.901803	1.230499	0.32953
L+3	1.437305	0.444906	0.200276
L+2	1.339344	0.399463	0.174697
L+1	0.521642	0.222317	0.115648
L	0.288713	0.143132	0.071566
H	-7.89076	-7.94219	-7.97538
H-1	-7.94572	-8.00613	-7.97538
H-2	-8.8007	-8.0113	-8.023
H-3	-8.84098	-8.08722	-8.023
H-4	-9.0701	-8.86465	-8.05049
H-5	-9.11908	-8.92778	-8.08341
H-6	-9.7746	-8.93241	-8.12287
H-7	-9.86494	-8.93268	-8.12314

Figure S13. Electronic transition of the $\mathbf{P h} \mathbf{- C b}-\mathbf{m F I}$ monomer corresponding to the lowest energy absorption.

Figure S14. Electronic transition of the Fl -stacked dimer Ph -Cb-mFI corresponding to the lowest energy absorption.

Figure S15. Electronic transition of the Ph-stacked dimer Ph-Cb-mFI corresponding to the lowest energy absorption.

Figure S16. Electronic transition of the Ph-Cb-mFI trimer corresponding to the lowest energy absorption.

Figure S17. (left) Views of cis-DmFl-Cb illustrating the π-overlap. View 2 is rotated 90° compared with view 1 . The overlap ratio (3.2%) was calculated with Adobe Photoshop 2017 v.18.0.1 using the integrals of overlap and FI. (right) HOMO of cis-DmFl-Cb.

Figure S18. (left) Views of cis-DmFI-Cb emphasizing the other adjacent pair of FI moieties; no overlap is observed. (right) LUMO of cis-DmFl-Cb.

Figure S19. (left) Views of trans-DmFI-Cb illustrating adjacent FI moieties. View 2 is rotated 90° compared with view 1. The overlap ratio (1.7\%) was calculated with Adobe Photoshop 2017 v.18.0.1 using the integrals of overlap and Fl. (right) HOMO and LUMO of trans-DmFl-Cb.

Reference

1. A.L. Spek, Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71, 9.
