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COMPARISON OF FOLDING TIME
LANDSCAPE

The folding time for a polymer chain with length L =
50l is shown in Fig. 1. The chain has four binding sites
(i.e. two contacts) which are randomly distributed over
the chain. Each curve is representing the case explained
in the main text.
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FIG. 1. Rescaled folding time (TfoldD/a2) of polymer with
two contacts in different topological spaces, series (S), parallel
(P) and cross (X). The standard errors are smaller than the
symbols’ size. The polymer length is L = 50l and the names
of each curve is given in the legend according to the definitions
described in the main text.

Fig. 2 shows the folding time landscape of the chain,
when the external molecule (Chaperone) sticks to either
the chain’s binding sites(Internal loop) or adds another
loop to the chain native state (External loop). In both
cases, the diffusion constant of the chaperone could be
higher (3.0D) or lower (0.3D) than the diffusion constant

FIG. 2. Ternary plots of rescaled folding time (TfoldD/a2)
for a polymer with four contacts in its native state when one
internal or external contact has different diffusion constant
with respect to the other polymer contacts. Plot (a)-(d) re-
spectively corresponds to the cases (ii-1)-(iii-2) which are ex-
plained in the main text.

of chain monomers (D). This figure is similar to Fig. 3
in the main text but the lower and upper bounds in the
color bars are set differently.

FOLDING RATES ESTIMATION

Approximate solution

Based on the shortest distance in the final folded state
of the chain, it is possible to find simple expressions that
roughly estimate the folding rates of the different topo-
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logical states [1, 2]. For a chain whose length is L and
its binding sites are separated by contour lengths of l1,
l2 and l3 (see Fig. 3), the folding rates of S-, P- and

X-loops can be estimated as rs = 1/(l
3/2
1 + l

3/2
3 ), rp =

1/(l
3/2
2 +(l1+l3)3/2) and rx = 1/((l1+l2)3/2+(l2+l3)3/2)

respectively. The averaged values of rates can be ob-
tained as

〈ry(l2)〉 =

∑L
l1,l3=1 ryθ(L− (l1 + l2 + l3))∑L
l1,l3=1 θ(L− (l1 + l2 + l3))

(1)

Where θ(x) = 1 for x ≥ 0 and θ(x) = 0 otherwise.
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FIG. 3. A chain with four binding sites. The binding sites
are separated by contour segments of l1, l2 and l3 along the
chain. There are two possible pathways, configuration I and
II, to close the binding sites of the chain into the parallel
state.

The resulting averages are shown in Fig. 4. The results
are obtained from a chain of length L = 200l, where l is
a chain segment, and the average is taken over the en-
sembles of loops in which the length l1 and l3 are varied
in the range of l to 80l. For the whole range of inter-loop
distances (l2), the average folding rate of the S-loops is
higher than the rate of the other loop sets in the parallel
and cross topologies. Additionally, 〈rs〉 remains constant
since the folding rate of the S-loops is independent of the
inter-loop distance. For the short inter-loop distances
(l2 < 4) X-loops fold faster than P-loops, however, as
the inter-loop distances grow, the folding rates of the
loops in both topological sets are reduced and the P-
loops starts to fold faster than X-loops. The result of
averaging all folding rates over the inter-loop distances
is (〈rs〉l2 ,〈rp〉l2 ,〈rx〉l2 =10−3 (3.5, 1.9, 1.5)). The S-loops
have the fastest folding kinetics while the P-loops fold
and X-loops have approximately the same overall folding
rate. There are two main differences between the folding
time obtained from the current relation and the KMC
method. In the relation proposed for folding rates of the
P-loops, it is assumed that the zipping mechanism is al-
ways effective. Thus the sequence in the folding process
is deterministic and the shorter loop folds initially. How-
ever, in the KMC, the sequence of the folding process

occurs probabilistically and the probability of the event
that prior to the smaller loop, the larger loop is closed
is not zero. The second difference is that the parame-
ter space in KMC method is not fully explored. As it
is shown in the inset of Fig. 4, the folding rates of the
X-loops exceed the P-loops for the relatively large loops.
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FIG. 4. Rescaled folding rates (〈r〉) of a chain having the
length of L = 200l and four binding sites obtained from equa-
tion 1 against the inter-loop distance l2. The binding sites are
randomly distributed along the chain with the following con-
tour lengths, l1, l2 and l3. The ensemble average is taken over
the lengths l1, l3 < 80l. Inset shows the rescaled folding rate
which is averaged only over the large loops, 60l < l1, l3 < 80l.

Zipping mechanism in ideal chain

Depending on which loop is closed faster, there are two
possible events in the folding process of parallel loops. As
illustrated in Fig. 3, the linear Gaussian chain has four
binding sites which are separated by contour segments
of l1, l2, l3. Each segment of the chain is modeled by a
spring whose elastic stiffness is γ. As explained in KMC
section, the association rate between the binding sites
is scaled by the effective stiffness between each pair of

the binding sites, ka γ
3/2
eff . For the configuration I, the

inner loop is closed firstly, and the stiffness matrix of the
configuration becomes

KI = γ


1
l1

− 1
l1

0 0

− 1
l1

1
l1

+ 2
l2

− 2
l1

0

0 − 2
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+ 1
l3
− 1
l3

0 0 − 1
l3

1
l3

 (2)

The stiffness matrix is obtained based on finite element
theory of the linear spring network, for more information
see ref. [3, 4]. Alternatively, for the event in which the
outer loop is closed initially, as shown in Fig. 3, the



3

stiffness matrix becomes:

KII = γ


1
l1

+ 1
L − 1

l1
0 − 1

L

− 1
l1

1
l1

+ 1
l2

− 1
l2

0

0 − 1
l2

1
l2

+ 1
l3
− 1
l3

− 1
L 0 − 1

l3
1
l3

+ 1
L

 (3)

To calculate the effective association rate of the folded
structures for both configurations, it is required to solve
the following equation,

X = K−1F (4)

Where for the configurations I and II the corresponding
vectors are FI = [1 0 0 − 1]T and FII = [0 1 − 1 0]T .
The resulting effective stiffness for two configurations are
obtained as

γe,I =
2γ

2l1 + l2 + 2l3
(5)

γe,II =
2γ

l2

l1 + l2 + l3
2l1 + l2 + 2l3

=

(
1 +

(l1 + l3)

l2

)
γe,I (6)

It is clear that γe,I < γe,II however, the difference be-
comes smaller if size of the inner loop grows to the size
of the outer loop l2 → l1 + l3. The corresponding folding
time is calculated as

T foldI = T1 +Aγ
−3/2
e,I (7)

T foldII = T1 +Aγ
−3/2
e,II (8)

Where A is a constant prefactor. An equal folding time
(T1) is assigned for both configurations since the total
association rates of the binding pairs in the both con-
figurations (ktot) is the same (see relation 3 in the main
text). This means that the escape time of unfolded state
of the chain into the partially folded state (either config-

uration I or II) is the same. Hence, since T foldI > T foldII ,
the zipping mechanism is not an effective pathway in the
KMC folding of the Gaussian chain model. The reason
can be explained by the constrains that both configura-
tions have. For the configuration II, since the chain is
ideal, we can neglect the other two tails of the chain and
assume it as a ring. In this case, since the starting and
finishing points of the chain are constraint to a point, the
chain has less configuration entropy compared to when a
point on the chain is fixed (Configuration I).

Comparing approximate solution with KMC

In this section, we assume a Gaussian chain having
L = 200l segments and the binding site along the chains
are distributed such that the two lengths l1 = 80l and
l3 = 80l are fixed and l2 varies between 5l, 10l and 15l.
The folding rates obtained from both equation (1) and
KMC method is shown in Fig. 5. All folding rates are

normalized by the constant 〈rs〉. As expected, the folding
rate of S-loops obtained from the both methods does not
depend on the inter-loop distances l2. Additionally, there
exists similar trends and scaling for the averaged folding
rates of P-loops and X-loops which confirms the KMC
model approximately agrees well with equation 1. How-
ever, large error bars are observed for the folding rates
of P-loops with respect to the other topological states.
This is originated from the bi-modal distribution of P-
loops folding pathways which is already explained in the
previous section. In this regard, the ensemble of P-loops
is separated into two independent configurations I and
II ensembles and then the average is taken over each en-
semble, i.e. 〈rp〉confI and 〈rp〉confII . As this is shown in
Fig. 5(b), while the error bars of rates in each ensem-
ble have been reduced dramatically, the folding rate of
P-loops in the second configuration exceed the rates of
S-loops. This is somehow expected because in this case,
the size of the loops is much larger than the inter-loop
distance l1, l3 > l2.
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FIG. 5. (a) Rescaled folding rates (〈r〉/〈rs〉) of a chain having
the length of L = 200l and four binding sites. The binding
sites are distributed along the chain with l1 = l3 = 80l and
the length l2 varies in l2 = 5l, 10l and 15l. Inset shows the
rescaled similar figure. (b) Folding rate of the same system as
explained in (a) but with extra ensemble averages 〈rp〉confI

and 〈rp〉confII .

MOLECULAR DYNAMICS SIMULATIONS

The coarse-grained model of polymer is simulated by
beads and springs. The total potential of the chain is
given by U = Ubond + Ubend + Uexcl[5, 6]. The connec-
tivity of the monomers is controlled by bonding energy
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Ubond = ks/2
∑

(ri,i+1 − d0)2, where ks and d0 denote
the spring stiffness and equilibrium distance respectively.
The bending energy is given by Ubend = kθ/2

∑
(θi,i+1 −

θ0)2. The bending stiffness, angle between two neigh-
boring bonds and equilibrium angle are denoted by kθ,
θi,i+1 and θ0 respectively. The self-avoidance is con-
trolled by repulsive part of the Lennard-Jones potential

Uexcl = 4ε
∑[

(σ/ri,j)
12 − (σ/ri,j)

6
]
, where ε and σ de-

note the well depth and monomer diameters. The sim-
ulations were carried out in canonical (NVT) ensemble
in temperature kBT = ε = 1, using the Nose-Hoover
thermostat via LAMMPS package [7].
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